Optimal Mapping of Stations to Access Points in Enterprise WLANs

Suzan Bayhan and Anatolij Zubow TU Berlin, Germany suzan.bayhan@tu-berlin.de http://www.hiit.fi/u/bayhan/

Telecommunication Networks Group

- WiFi efficiency is crucial
- Current approach: client decides on which AP to connect
- User-AP association not efficient, sticky user problem
- Enterprise WLANs can use their centralised controllers to allocate WiFi resource more efficiently

User connects to the link with the highest SNR

User connects to the link with the highest SNR **Problem: high SNR does not always mean high throughput, airtime share is also important**

Problem 1: AP loads not considered

User connects to the link with the highest SNR **Problem: high SNR does not always mean high throughput, airtime share is also important**

User remains connected to its AP until its link SNR is below some threshold SNR **Problem: an optimal link may become suboptimal due to** c client mobility or changes in AP load

Handover at t=3 Between t=0 and t=3, decreasing/low user throughput

- Client-driven decision based only on the link SNR (load of APs ignored)
- no handovers until the link SNR is very low

- Client-driven decision based only on SNR (load of APs ignored)
 - Infrastructure-driven considering also AP-loads, link SNRs, and user's application requirements
- No handovers until the link SNR is very low
 - Periodically to react timely to changes in network dynamics
 - and client-driven if the controller is not active

Our approach in comparison with the literature

- Infrastructure controls the handover/user-AP association decision
 - handover costs ignored
 - not-periodic assignment
 - only at the time of network joining is still suboptimal
- Periodic assignment schemes:
 - How often to periodically trigger controller?

System Model: enterprise WLAN setting

- Controller
- APs
- Ethernet connection between APs and the controller

Controller

Which AP should each user be connected to?

- Only downlink throughput
- WiFi AP shares the airtime **equally** among its users' DL traffic
- Some user applications, e.g., video, require minimum throughput for satisfactory user experience
- APs know the SNR of each link to the users

- Controller triggers user-AP mapping periodically, every T time units known as controller period
 - How to set the period T?
 - **short:** what is the cost/overhead of handover?
 - how does it affect WiFi throughput?
 - long: may not react fast enough to highly mobile users
- How should the controller decide on user-AP association?
 - Goal: proportional-fair user throughputs

Airtime share under handover-latency

- Periodic decision: T •
- Handover latency: t_{sw}
- Number of total users connected to AP j: nj
- Number of switching users to AP j: nj^{sw}

Airtime share under handover-latency

- Periodic decision: T
- Handover latency: t_{sw}
- Number of total users connected to AP j: nj
- Number of switching users to AP j: nj^{sw}

• Airtime for a switching user:

$$\alpha_{i,j}^{sw} = \frac{T-t_{sw}}{T} \cdot \frac{1}{n_j}$$

19/40

• Airtime for non-switching user: $\alpha_{i,j} = \frac{t_{sw}}{T} \cdot \frac{1}{n_j - n_j^{sw}} + \frac{T - t_{sw}}{T} \cdot \frac{1}{n_j}$

EXPECTED: may not be true if the controller period is long!

• Airtime for a switching user:

$$\alpha_{i,j}^{sw} = \frac{T - t_{sw}}{T} \cdot \frac{1}{n_j}$$

20740

EXPECTED

• Airtime for non-switching user: $\alpha_{i,j} = \frac{t_{sw}}{T} \cdot \frac{1}{n_j - n_i^{sw}} + \frac{T - t_{sw}}{T} \cdot \frac{1}{n_j}$

Throughput and utility of a user

- Throughput = airtime x Shannon capacity
- Utility:
 - Logarithmic function of throughput to ensure proportional fairness
 - minimum needed airtime of an application must be ensured

Optimal user-AP assignment

$$\mathbf{P1}: \max_{\mathbf{X}=[x_{i,j}]} \sum_{AP_j \in \mathcal{A}} \sum_{u_i \in \mathcal{U}} \log \left(1 + x_{i,j} r_{i,j} (\alpha_{i,j}^{sw} \phi_i + \alpha_{i,j} (1 - \phi_i)) \right)$$
(8)

$$\sum_{AP_{j} \in \mathcal{A}} x_{i,j} \leq 1 \qquad \forall u_{i} \in \mathcal{U}$$

$$x_{i,j} \leq v_{i,j} \qquad \forall u_{i} \in \mathcal{U}, \forall AP_{j} \in \mathcal{A}$$

$$(10)$$

$$\sum_{u_i \in \mathcal{U}} x_{i,j} \alpha_{i,j}^{min} \leqslant 1 \qquad \forall \mathbf{AP}_j \in \mathcal{A}$$
(11)

$$x_{i,j}\alpha_{i,j}^{min} \leqslant \alpha_{i,j}^{sw}\phi_i + \alpha_{i,j}(1-\phi_i), \forall u_i \in \mathcal{U}, \forall AP_j \in \mathcal{A}$$
(12)
$$x_{i,j}\alpha_{i,j}^{min} \leqslant \alpha_{i,j}^{sw}\phi_i + \alpha_{i,j}(1-\phi_i), \forall u_i \in \mathcal{U}, \forall AP_j \in \mathcal{A}$$
(12)

$$\alpha_{i,j}^{sw} = \frac{1 - v_{sw}}{T \cdot \sum_{u_i \in \mathcal{U}} x_{i,j}}$$
(13)

$$\alpha_{i,j} = \frac{t_{sw}}{T \cdot \sum_{u_i \in \mathcal{U}} x_{i,j} (1 - \phi_i)} + \frac{T - t_{sw}}{T \cdot \sum_{u_i \in \mathcal{U}} x_{i,j}}$$
(14)
$$x_{i,j} \in \{0,1\} \quad \forall u_i \in \mathcal{U}, \forall AP_j \in \mathcal{A}.$$
(15)

Please see the details in the paper

- Highest-SNR AP association (h-SNR)
 - client-driven handover run **periodically**
- Airtime-aware AP association (AIR)
 - Assign each randomly picked user to the AP that can provide the highest airtime*rate product
- **Demand-aware** AP association (DAW)
 - Ensure that a new assignment does not violate the minimum rate requirements of the already assigned users

Comparison of heuristics

Heuristic	AP load	HO cost	Demand	Distributed
CD	-	-	-	\checkmark
h-SNR	-	-	-	\checkmark
AIR	\checkmark	\checkmark	-	-
DAW	\checkmark	\checkmark	\checkmark	-

- Baseline: **CD**, the client-driven conventional approach
- **DAW** is the most advanced scheduler, but cannot be run distributedly

- Comparison with traditional approach (Client-Driven, CD)
- Optimality analysis (see the paper)
- Impact of various parameters:
 - controller period
 - handover cost
 - user density

- area = (150m, 100m)
- Num stations = 80
- Num APs = 10
- user speed: [1,5] m/s, random-waypoint mobility
- switching latency = 0.2 s
- minimum throughput requirements: [5,15] Mbps
- user-AP links: Keenan-Motley channels
- Fairness metric calculated every 5 time units
- 100 time slots, 100 repetitions

- the conference room
- 10% outside
- 90% users are in

- Grid-like topology
- Skewed user distribution

Uniform user

distribution

APs

Stations

Conference

- 90% users are in the conference room
- 10% outside

- Grid-like topology
- Skewed user distribution

- Uniform user distribution
- density balance: homogeneity of user distribution across APs (independent of association scheme, only-geometry dependent)

Mall

- Frequency assignment: graph colouring problem
- Bandwidth of each AP: total bandwidth/chromatic number of the graph

Scenario	Fraction of mobile users	Fraction of users with throughput demand
Conference	0.5	0.3
Office	0.3	0.5
Shopping mall	0.9	0.3

Table 3: Scenarios

Optimal Mapping of Stations to Access Points in Enterprise WLANs

figure: Public Domain, <u>https://</u> <u>commons.wikimedia.org/w/index.php?</u> <u>curid=1386753</u>

- Utility (objective of our optimization problem)
- Fraction of satisfied users
- Fairness across user throughputs
- Load balance of APs
- Gain in weakest user's performance over CD
- Probability of handover

Conference (0.33 density balance)

Office Mall (0.76 density balance) (0.95 density balance)

• Controller period : {1, 2, 4, 10, 20} number of time slots (timeslot=1 s)

• Utility at T=1

Conference (0.33 density balance)

Office Mall (0.76 density balance) (0.95 density balance)

- utility improvement over CD: 18%, 5%, 2% by DAW for each scenario
- improvement in weakest user's perf: 120%, 73%, 71% by DAW
- Most improvement in Conference setting with low density balance

Conference (0.33 density balance)

Office Mall (0.76 density balance) (0.95 density balance)

- Most improvement in Conference setting with low density balance
- Even highest-SNR can achieve significant improvement over CD
- Difference among schemes become less relevant for longer periods

Impact of controller period

More analysis on AP load balance, probability of handover in the paper

Impact of handover cost

- Conference setting
- Assume all users are mobile

- Airtime conserved (less airtime for switching, more airtime for non-switching)
- Decrease in the weakest user's throughput gain

Impact of user density

- Conference scenario (0.3 fraction of users with min-throughput demand)
- Decreasing user satisfaction and fairness with increasing density
- Gap between DAW and naive schemes increases

Conclusions and future work

- infrastructure-driven user-AP association decision for enterprise-WLANs
- periodic scheme considering not only link qualities but also handover cost, AP loads, and user application requirements
- highest improvement for deployments with low density balance like conference scenario
- periodic assignment provides performance improvement for client-driven highest SNR based association scheme
- future work:
 - uplink traffic to be considered
 - realistic mobility models
 - implementation on real hardware

Conclusions and future work

- infrastructure-driven user-AP association scheme for enterprise-WiFis
- periodic scheme considering handover cost, link qualities, AP loads, and user application requirements
- highest improvement for deployments with low density balance like conference scenario
- periodic client-driven achieves also higher performance
- future work:
 - implementation on real hardware
 - uplink traffic to be considered
 - realistic mobility models

- Murad Abusubaih and Adam Wolisz. An optimal station association policy for multi-rate IEEE 802.11 wireless LANs. ACM MsWiM 2007.
- Dawei Gong and Yuanyuan Yang. 2014. On-line AP association algorithms for 802.11n WLANs with heterogeneous clients. IEEE Trans. Comput 2014.
- O. B. Karimi, J. Liu, and J. Rexford. Optimal collaborative AP association in wireless networks. In IEEE INFOCOM, 2014.