

Seeker-Assisted Information Search in Mobile Clouds Suzan Bayhan[†], Esa Hyytiä[‡], Jussi Kangasharju^{*}, and Jörg Ott[‡] [†]Helsinki Institute for Information Technology (HIIT), Aalto University, Finland [‡]Aalto University, School of Electrical Engineering, Finland ^{*}Department of Computer Science, University of Helsinki, Finland

⊠ bayhan@hiit.fi

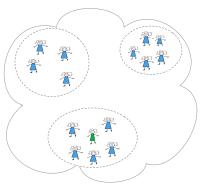
Aug.12, 2013, Mobile Cloud Computing (MCC'13)

Mobile Cloud

- Proximate mobile computing entities may form a mobile cloud.
- Mobile data traffic predicted to 3x by 2017, mobile UGC \uparrow , mobile storage capacity \uparrow

Mobile Cloud

- Proximate mobile computing entities may form a mobile cloud.
- Mobile data traffic predicted to 3x by 2017, mobile UGC \uparrow , mobile storage capacity \uparrow


Increasing volume of data calls for efficient information search schemes in the mobile cloud

ICC, Hong Kong, China, Aug.12, 2013 S. Bayhan 2/41

Mobile Cloud Under Intermittent Connectivity

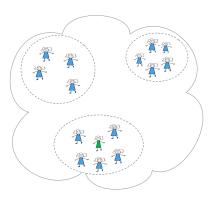
How to form the mobile cloud in this network?

- No infrastructure
- No end-to-end connectivity

MCC, Hong Kong, China, Aug.12, 2013 S. Bayhan 3/41

Mobile Cloud Under Intermittent Connectivity

How to form the mobile cloud in this network?


- No infrastructure
- No end-to-end connectivity

But nodes are mobile!

- Exploit mobile nodes as message carriers
- Multiple message copies to increase probability of delivery

Mobile Cloud Under Intermittent Connectivity

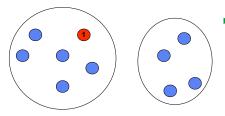
How to form the mobile cloud in this network?

- No infrastructure
- No end-to-end connectivity

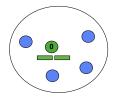
But nodes are mobile!

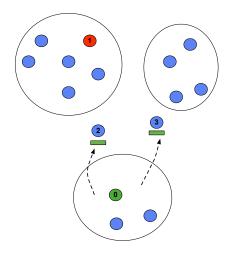
- Exploit mobile nodes as message carriers
- Multiple message copies to increase probability of delivery

Delay/Disruption tolerant networking (DTN)



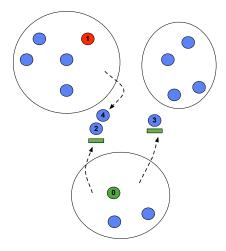
Outline


- 1. Background on Delay/Disruption Tolerant Networking (DTN)
 - Information Search in a DTN
- 2. Seeker-Assisted Search (SAS)
 - Model and Assumptions
 - Performance Analysis
- 3. Summary and Future Directions



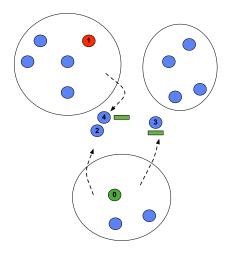
t=0: 2 copies of the message

MCC, Hong Kong, China, Aug.12, 2013 S. Bayhan 5/41


► t=0: 2 copies of the message

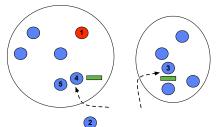
t=1: One copy to 2 and 3

MCC, Hong Kong, China, Aug.12, 2013 S. Bayhan 6/41

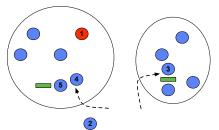


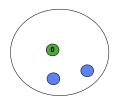
- t=0: 2 copies of the message
- t=1: One copy to 2 and 3
- t=2: 2 meets 4 and 3 moves

MCC, Hong Kong, China, Aug.12, 2013 S. Bayhan 7/41

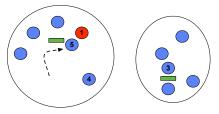


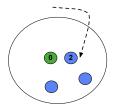
- t=0: 2 copies of the message
- t=1: One copy to 2 and 3
- t=2: 2 meets 4 and 3 moves
- t=3: 2 transmits to 4


MCC, Hong Kong, China, Aug.12, 2013 S. Bayhan 8/41

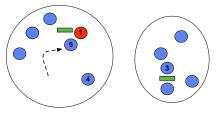


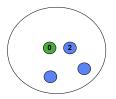
- t=0: 2 copies of the message
- t=1: One copy to 2 and 3
- t=2: 2 meets 4 and 3 moves
- t=3: 2 transmits to 4
- t=4: 4 and 3 carries the message





- t=0: 2 copies of the message
- t=1: One copy to 2 and 3
- t=2: 2 meets 4 and 3 moves
- t=3: 2 transmits to 4
- t=4: 4 and 3 carries the message
- ► t=5: 4 transmits to 5





- t=0: 2 copies of the message
- t=1: One copy to 2 and 3
- t=2: 2 meets 4 and 3 moves
- t=3: 2 transmits to 4
- t=4: 4 and 3 carries the message
- t=5: 4 transmits to 5
- ► t=6: 5 meets 1

- t=0: 2 copies of the message
- t=1: One copy to 2 and 3
- t=2: 2 meets 4 and 3 moves
- t=3: 2 transmits to 4
- t=4: 4 and 3 carries the message
- t=5: 4 transmits to 5
- t=6: 5 meets 1
- t=7: Transmission is completed

In short

- Communication for weakly-connected nodes is still possible by Delay Tolerant Networking, DTN
- Even if mobile nodes have loose connectivity, they can form a mobile cloud using store-carry-forward approach

MCC, Hong Kong, China, Aug.12, 2013 S. Bayhan 13/41

Information Search in a DTN


Challenges of search:

- No Google-style database
- High volume of user generated content
- Mystery of the location of the searched content

Easiest way:

- Epidemic: Copy the message to each encountered node
- Direct delivery: Wait till meeting the destination (no replication!)

Information Search in a DTN

Challenges of search:

- No Google-style database
- High volume of user generated content
- Mystery of the location of the searched content

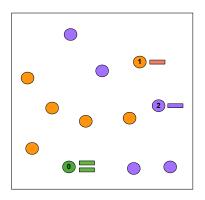
Easiest way:

- Epidemic: Copy the message to each encountered node
- Direct delivery: Wait till meeting the destination (no replication!)

Trade-offs:

- Search completion time
- Search overhead: Replication ratio

Our aim is to design a search scheme considering the tradeoffs


Outline

- Background on Delay/Disruption Tolerant Networking (DTN)
 - Information Search in a DTN
- 2. Seeker-Assisted Search (SAS)
 - Model and Assumptions
 - Performance Analysis
- 3. Summary and Future Directions

Our Model and Assumptions

- A DTN-based mobile cloud
- People with similar interests form a community (group of nodes with noticeably higher in-group interactions)
- Community 1 (C₁), Community 2 (C₂)
- Searching node (in C₁)
- Some of the nodes in both communities own the searched content

Our Basic (not-so-unrealistic!) Assumptions

- People search information based on their interests
- The searched item is stored in the same community with higher probability
- People in the same community meet more frequently (i.e., homophily principle)

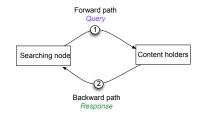
MCC, Hong Kong, China, Aug.12, 2013 S. Bayhan 17/41

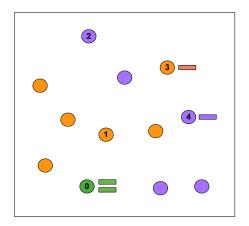
Five Node Types

- 1. Searching node: ns
- 2. Tagged node (T): A node holding the searched content
- 3. Seeker node (S): A node holding a copy of the query
- 4. Tagged seeker node (*TS*): A node with both the content and the query
- 5. Passive node (P): Rest of the nodes

A node's type may change upon encounters and the actions triggered by the search scheme

Seeker-Assisted Search (SAS)

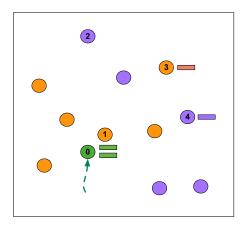

Forward Path:


- Seekers assist the searching node by
 - carrying the query and forwarding it
 - replicating the searched content if encounters a tagged node
- ► Push the query towards more useful nodes → same community members as the searching node

Backward path:

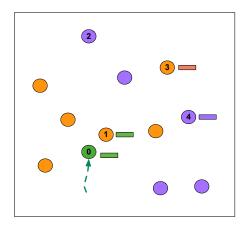
Response delivered in single hop

MCC, Hong Kong, China, Aug.12, 2013 S. Bayhan 19/41


History t = 0: 2 message copies

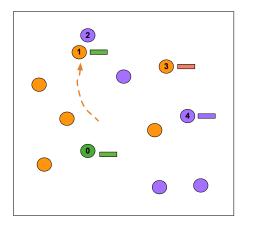
 $\textbf{Passive} \Rightarrow \textbf{Seeker} \Rightarrow \textbf{Tagged Seeker} \Rightarrow \textbf{Completed}.$

MCC, Hong Kong, China, Aug.12, 2013 S. Bayhan 20/41


History t = 0: 2 message copies t = 1: n_s meets 1

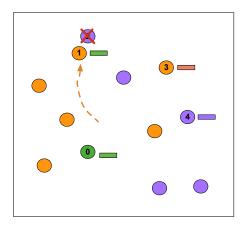
 $\textbf{Passive} \Rightarrow \textbf{Seeker} \Rightarrow \textbf{Tagged Seeker} \Rightarrow \textbf{Completed}.$

MCC, Hong Kong, China, Aug.12, 2013 S. Bayhan 21/41


History t = 0: 2 message copies t = 1: n_s forwards to 1

 $\textbf{Passive} \Rightarrow \textbf{Seeker} \Rightarrow \textbf{Tagged Seeker} \Rightarrow \textbf{Completed}.$

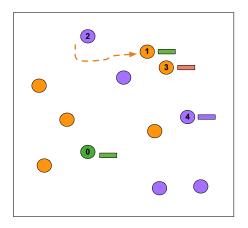
MCC, Hong Kong, China, Aug.12, 2013 S. Bayhan 22/41



History t = 0: 2 message copies t = 1: n_s forwards to 1 t = 2: 1 meets 2

 $\textbf{Passive} \Rightarrow \textbf{Seeker} \Rightarrow \textbf{Tagged Seeker} \Rightarrow \textbf{Completed}.$

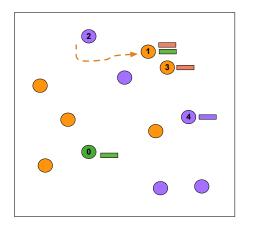
MCC, Hong Kong, China, Aug.12, 2013 S. Bayhan 23/41



History t = 0: 2 message copies t = 1: n_s forwards to 1 t = 2: 1 meets 2, no forwarding

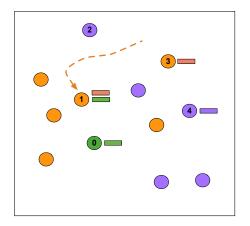
 $\textbf{Passive} \Rightarrow \textbf{Seeker} \Rightarrow \textbf{Tagged Seeker} \Rightarrow \textbf{Completed}.$

MCC, Hong Kong, China, Aug.12, 2013 S. Bayhan 24/41


History t = 0: 2 message copies t = 1: n_s forwards to 1 t = 2: 1 meets 2, no forwarding t = 3: 1 meets 3

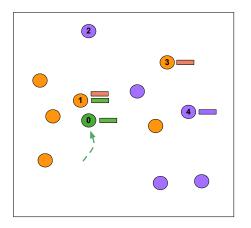
 $\textbf{Passive} \Rightarrow \textbf{Seeker} \Rightarrow \textbf{Tagged Seeker} \Rightarrow \textbf{Completed}.$

MCC, Hong Kong, China, Aug.12, 2013 S. Bayhan 25/41


History t = 0: 2 message copies t = 1: n_s forwards to 1 t = 2: 1 meets 2, no forwarding t = 3: 1 meets 3, replicates the content

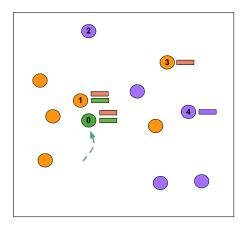
 $Passive \Rightarrow Seeker \Rightarrow Tagged Seeker \Rightarrow Completed.$

MCC, Hong Kong, China, Aug.12, 2013 S. Bayhan 26/41


History t = 0: 2 message copies t = 1: n_s forwards to 1 t = 2: 1 meets 2, no forwarding t = 3: 1 meets 3, replicates the content t = 4: 1 carries the content and the query

 $Passive \Rightarrow Seeker \Rightarrow Tagged Seeker \Rightarrow Completed.$

MCC, Hong Kong, China, Aug.12, 2013 S. Bayhan 27/41


History t = 0: 2 message copies t = 1: n_s forwards to 1 *t* = 2: 1 meets 2, no forwarding t = 3: 1 meets 3, replicates the content t = 4: 1 carries the content and the guery t = 5: 1 meets n_s

 $Passive \Rightarrow Seeker \Rightarrow \textbf{Tagged Seeker} \Rightarrow Completed$

MCC, Hong Kong, China, Aug.12, 2013 S. Bayhan 28/41

History t = 0: 2 message copies t = 1: n_s forwards to 1 *t* = 2: 1 meets 2, no forwarding t = 3: 1 meets 3, replicates the content t = 4: 1 carries the content and the guery t = 5: Search ends

 $Passive \Rightarrow Seeker \Rightarrow Tagged Seeker \Rightarrow Completed$

MCC, Hong Kong, China, Aug.12, 2013 S. Bayhan 29/41

Continuous-time Markov Modeling

In-community and external-community meetings: Inter-contact times $\sim Exp(\mu_i)$ and $Exp(\mu_x)$

Our model:

- n_i nodes in C_i , i = 1, 2
- ► In community meetings are more frequent, $\mu_i > \mu_x$
- Only M + 1 copies of the query (max number of seekers)

Continuous-time Markov Modeling

In-community and external-community meetings: Inter-contact times $\sim Exp(\mu_i)$ and $Exp(\mu_x)$

Our model:

- n_i nodes in C_i , i = 1, 2
- ► In community meetings are more frequent, $\mu_i > \mu_x$
- ▶ Only *M* + 1 copies of the query (max number of seekers)

 $z = (m_1, k_1, mk_1, m_2, k_2, mk_2, c)$

- m_i : # of tagged nodes in C_i
- k_i : # of seeker nodes in C_i
- mk_i : # of tagged seeker nodes in C_i
- c: # of remaining copies at n_s other than its own copy

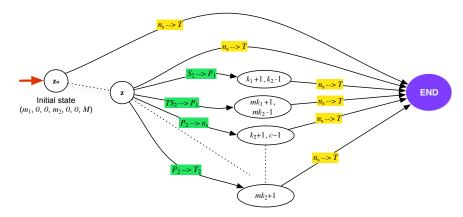
Recursive solution for the Markov process

Performance Metrics

Search completion time:

What is the average time to meet a tagged node?

Overhead:


What is the replication ratio before search completion?

State Transitions

 $z = (m_1, k_1, mk_1, m_2, k_2, mk_2, c)$

 n_s : Searching node, S_i : Seeker (k_i), P_i : Passive T_i : Tagged, TS_i : Tagged seeker (mk_i), i: Community index

MCC, Hong Kong, China, Aug.12, 2013 S. Bayhan 32/41

Performance Analysis

We analyze the effect of:

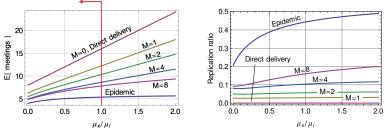
- In-community/external-community meetings
- Location of the searched content, in C_1 or C_2 , or both
- Network population

Performance Analysis

We analyze the effect of:

- In-community/external-community meetings
- Location of the searched content, in C_1 or C_2 , or both
- Network population

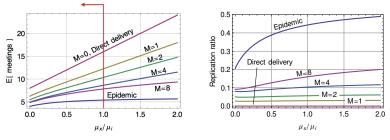
We use the following bounds for comparison:


- Upper bound for performance and overhead
 - Epidemic search
 - No limits on replication, $M = \infty$
- Lower bound
 - Direct delivery
 - Search completes only when n_s meets tagged nodes, i.e., no seekers, M = 0

Effect of Average Inter-contact Times (μ_x/μ_i)

Setting: 8 nodes in each community, one content only in C_1

(a) Response time

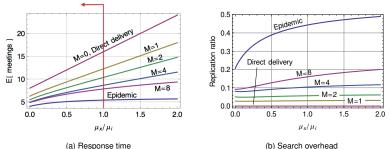

(b) Search overhead

MCC, Hong Kong, China, Aug.12, 2013 S. Bayhan 34/41

Effect of Average Inter-contact Times (μ_x/μ_i)

Setting: 8 nodes in each community, one content only in C1

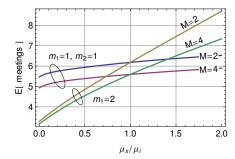
(a) Response time


(b) Search overhead

▶ With increasing M, the performance of SAS \rightarrow Epidemic

Effect of Average Inter-contact Times (μ_x/μ_i)

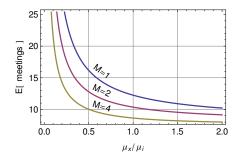
Setting: 8 nodes in each community, one content only in C1


- With increasing M, the performance of SAS \rightarrow Epidemic
- Epidemic spreads the content to almost 50% while SAS to 10% of nodes for M = 4
- As µ_x/µ_i increases, search time ↑ but cost is almost insensitive

al MCC, H

Location of the Content

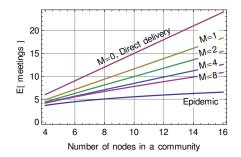
- Case 1: 2 copies in C₁
- Case 2: 1 copy in C₁, 1 copy in C₂



- $\mu_x/\mu_i < 1 \Rightarrow$ Shorter search time for $m_1 = 2$

Mean search time if our same-community assumption does not always hold

What if only C_2 has the content?



- For low μ_x/μ_i , long time to reach the content
- For larger μ_x/μ_i , search speed increases significantly

MCC, Hong Kong, China, Aug.12, 2013 S. Bayhan 36/41

Effect of network population

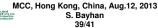
 Response time scales approximately linearly with the increasing network population

MCC, Hong Kong, China, Aug.12, 2013 S. Bayhan 37/41

Outline

- Background on Delay/Disruption Tolerant Networking (DTN)
 - Information Search in a DTN
- 2. Seeker-Assisted Search (SAS)
 - Model and Assumptions
 - Performance Analysis

3. Summary and Future Directions



MCC, Hong Kong, China, Aug.12, 2013 S. Bayhan 38/41

Summary and Future Directions

- Mobile cloud under intermittent connectivity
- Seeker-Assisted Search (SAS)

Summary and Future Directions

- Mobile cloud under intermittent connectivity
- Seeker-Assisted Search (SAS)
- Future directions:
 - Human mobility and social properties
 - Exploit the relationship between contents and users
 - Simulation-based analysis using real mobility traces

Summary and Future Directions

- Mobile cloud under intermittent connectivity
- Seeker-Assisted Search (SAS)
- Future directions:
 - Human mobility and social properties
 - Exploit the relationship between contents and users
 - Simulation-based analysis using real mobility traces

Thank you!!!

Suzan Bayhan http://www.hiit.fi/u/bayhan

MCC, Hong Kong, China, Aug.12, 2013 S. Bayhan 39/41

State Transitions from $(m_1, k_1, mk_1, m_2, k_2, mk_2, c)$

Community 1 intra-community meetings					
	ns	<i>P</i> ₁	S_1	T_1	TS_1
<i>P</i> ₁	<i>k</i> ₁ +1, <i>c</i> -1	-	-	-	-
S_1	-	-	-	<i>mk</i> ₁ +1	<i>mk</i> ₁ +1
T_1	S_{end}	-	mk_1+1	-	-
TS_1	S_{end}	-	mk_1+1	-	-
Community 2 intra-community meetings					
		P_2	S_2	T ₂	TS_2
P ₂	-	-	-	-	-
S_2	-	-	-	mk_2+1	mk_2+1
T ₂	-	-	mk_2+1	-	-
$T\bar{S}_2$	-	-	mk_2+1	-	-
Inter-community meetings					
	ns	P ₁	S_1	T_1	TS_1
<i>P</i> ₂	<i>k</i> ₂ +1, <i>c</i> −1	-	-	-	-
<i>S</i> ₂	-	$k_1 + 1, k_2 - 1$	-	<i>mk</i> ₂ +1	<i>mk</i> ₂ +1
<i>T</i> ₂	$S_{ m end}$	-	mk_2+1	-	-
TS ₂	$S_{ m end}$	mk_1+1, mk_2-1	<i>mk</i> ₁ +1	-	-

Attention to P_1 meets S_2 and TS_2 vs. P_2 meets S_1 and TS_1 .

MCC, Hong Kong, China, Aug.12, 2013 S. Bayhan 40/41

Hui et al. 1: File sharing using Osmosis principle

(Forward path) Epidemic (Backward path) Osmosis

🔶 🗛

MCC, Hong Kong, China, Aug.12, 2013 S. Bayhan 41/41

¹ Pan Hui, J. Leguay, J. Crowcroft, J. Scott, T.Friedman, and V. Conan. Osmosis in Pocket Switched Networks. In IEEE ChinaCom, 2006.

² Mikko Pitkånen, T. Kärkkäinen, J. Greifenberg, and J. Ott. Searching for content in mobile DTNs, IEEE PerCom, 2009.

³ Jialu Fan, J. Chen, Y. Du, P.Wang, and Y.S.Delque: A socially aware delegation query scheme in delay-tolerant networks. IEEE Trans. on Vehicular Technology, 60(5):2181–2193, 2011.

Hui et al. 1: File sharing using Osmosis principle

- (Forward path) Epidemic (Backward path) Osmosis
- We control flooding also in the forward path

🔶 🔶

MCC, Hong Kong, China, Aug.12, 2013 S. Bayhan 41/41

¹ Pan Hui, J. Leguay, J. Crowcroft, J. Scott, T.Friedman, and V. Conan. Osmosis in Pocket Switched Networks. In IEEE ChinaCom, 2006.

² Mikko Pitkånen, T. Kärkkäinen, J. Greifenberg, and J. Ott. Searching for content in mobile DTNs, IEEE PerCom, 2009.

³ Jialu Fan, J. Chen, Y. Du, P.Wang, and Y.S.Delque: A socially aware delegation query scheme in delay-tolerant networks. IEEE Trans. on Vehicular Technology, 60(5):2181–2193, 2011.

Hui et al. 1: File sharing using Osmosis principle

- (Forward path) Epidemic (Backward path) Osmosis
- We control flooding also in the forward path

Pitkänen et al. 2: When to terminate the query?

Hop-count, TTL, global-response count estimate,

🔶 🗛

MCC, Hong Kong, China, Aug.12, 2013 S. Bayhan 41/41

¹ Pan Hui, J. Leguay, J. Crowcroft, J. Scott, T.Friedman, and V. Conan. Osmosis in Pocket Switched Networks. In IEEE ChinaCom, 2006.

² Mikko Pitkånen, T. Kärkkäinen, J. Greifenberg, and J. Ott. Searching for content in mobile DTNs, IEEE PerCom, 2009.

³ Jialu Fan, J. Chen, Y. Du, P.Wang, and Y.S.Delque: A socially aware delegation query scheme in delay-tolerant networks. IEEE Trans. on Vehicular Technology, 60(5):2181–2193, 2011.

Hui et al. 1: File sharing using Osmosis principle

- (Forward path) Epidemic (Backward path) Osmosis
- We control flooding also in the forward path

Pitkänen et al. 2: When to terminate the query?

- Hop-count, TTL, global-response count estimate,
- No termination policy since we seek the time for getting a response with probability 1

Fan et al. 3: Dynamic geo-community concept

Our community concept is location-independent

² Mikko Pitkånen, T. Kärkkäinen, J. Greifenberg, and J. Ott. Searching for content in mobile DTNs, IEEE PerCom, 2009.

³ Jialu Fan, J. Chen, Y. Du, P.Wang, and Y.S.Delque: A socially aware delegation query scheme in delay-tolerant networks. IEEE Trans. on Vehicular Technology, 60(5):2181–2193, 2011.

¹ Pan Hui, J. Leguay, J. Crowcroft, J. Scott, T.Friedman, and V. Conan. Osmosis in Pocket Switched Networks. In IEEE ChinaCom, 2006.