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Abstract—Spectrum sensing is an important aspect of Cogni-
tive Radio Networks. Secondary users should sense the channels
periodically in order to ensure primary user protection. Sensing
with cooperation among several secondary users is more robust
and less error prone. However, cooperation also increases the
energy spent for sensing. Considering the periodic nature of
sensing, even a small amount of savings in each sensing period
leads to considerable improvement in the long run. In this
paper, we consider the problem of energy-efficient spectrum
sensing scheduling with satisfactory primary user protection.
Our model exploits the diversity of secondary users in their
received signal-to-noise-ratio value of the primary signal to
determine the sensing duration for each user/channel pair for
higher energy efficiency. We model the mentioned problem as
an optimization problem with two different objectives. The first
one minimizes the energy consumption whereas the second one
minimizes the spectrum sensing duration in order to maximize
the remaining time for data transmission. We solve both problems
using outer linearization method. In addition, we present two
sub-optimal but efficient heuristic methods. We provide an
extensive performance analysis of our proposed methods under
various number of secondary users, average channel signal-to-
noise-ratio, and channel sampling frequency. Our analysisreveal
that all proposals with energy minimization perspective provide
significant energy savings compared to a pure transmission time
maximization technique.

Index Terms—Cooperative sensing scheduling, energy-efficient
sensing, sensing task assignment, heterogeneous sensing.

I. I NTRODUCTION

I NCREASING demand for wireless communications calls
for better spectrum utilization. One of the most promising

solutions is the dynamic spectrum access (DSA) paradigm
which allows the opportunistic access of spatio-temporally
unused wireless spectrum by cognitive radio networks (CRN).
In a CRN, a secondary user (SU) transmits through a fre-
quency channel which is licensed to primary users (PU) but
is currently unoccupied. However, DSA has the challenge
to guarantee that SUs vacate the spectrum whenever a PU
transmits simultaneously at the band of SU transmission.
Hence, SUs must perform spectrum sensing. The accuracy of
spectrum sensing is paramount for both finding the spectral
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voids and for protecting the PU communications. Hence, a
sensing period is reserved at the beginning of each frame for
the spectrum sensing task.

Previous works showed the increase in sensing accuracy
with the increase in sensing time [1]. On the other hand, SUs
which are mostly mobile devices should be energy-efficient
as they use their battery power. Therefore, from the energy
(throughput) efficiency perspective, the more time is spent
on sensing the more energy is consumed for overhead and
less time remains for transmission. On the other hand, the
throughput of the network is a function of the detection
accuracy (i.e., probability of detection,Pd, and probability of
false alarm,Pf ). Hence, there is a trade-off between sensing
and transmission durations for both throughput and energy
efficiency.

In addition, it is shown that cooperation among the SUs
increases the detection reliability of spectrum sensing atthe
expense of additional communication overhead that increases
with the number of cooperating SUs [2]. Different from
cooperative sensing in a single channel,cooperative sensing
scheduling(CSS) has to balance the trade-off between the
detection accuracy of a single channel and the number of
channels being sensed in a multi-channel CRN. That is to
say, the more SUs are assigned to sense a single channel,
the higher is the probability of detection for that channel
at the expense of leaving some channels being unexplored.
While cooperative sensing has been well-investigated, CSS
still remains unexplored. It is shown in previous works that
CSS is NP-hard [3]. Taking the energy efficiency concerns into
account makes this problem even more complicated.

In this paper, we focus on energy efficiency of cooperative
spectrum sensing in a multi-channel CRN with heterogeneous
PU channels in terms of received signal-to-noise ratio (SNR)
values. Since scheduling the SUs to sense a number of
channels in a CRN is a difficult task [3], we propose three
schemes for energy-efficient CSS. The first one uses outer
linearization to find the optimal solution whereas the latter two
are efficient heuristic methods. Apart from these three, we also
analyze the problem from the transmission time point of view
as time spent for sensing is also time lost for transmission.

The rest of the paper is organized as follows: In Section II,
we revise the related work on energy efficiency in spectrum
sensing and state our contributions to the literature. In Sec-
tion III, we define the cooperative sensing system model and
introduce the basic theorems used in the formulated energy-
efficient CSS scheme. Section IV first formulates the problem
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and presents the methodology for finding the optimal solu-
tion. Proposed heuristic schemes are described in Section V
and their performances are evaluated in Section VI. Finally,
Section VII concludes the paper.

II. RELATED WORK AND CONTRIBUTIONS

Energy efficiency of CRNs has recently gained interest and
most of the initial works focus on the energy efficiency of
spectrum sensing [4–9] and cooperative sensing [10–14]. Su
et al.minimize the sensing energy consumption while meeting
the constraint on undiscovered spectrum opportunities [5], and
adapt the period of spectrum sensing in order to attain a
balance between energy consumption and missed spectrum
opportunities for a random access CRN [7]. Optimal sensing
and transmission durations for an SU under both high and low
SU power capacity are analytically derived in [8]. The effect
of transmission, idling, and sensing power consumption are
analyzed in that work. Peiet al. devise an optimal policy for
a single SU to decide on the order of channels to be sensed
as well as when to stop sensing and start transmission [9].
While all these previous works have valuable contributions,
they fall short of practicality. In practical CRNs, there are
multiple and most likely heteregenous primary channels. In
this setting, one of the major concern of the operator is to
explore as many PU channels as possible meeting the PU
detection and false alarm constraints. Therefore, in our work,
we enforce the SUs to sense all PU channels colloboratively
to maximize the discovered spectrum opportunities.

Works in [12] and [13] consider the communication cost
for determining the number of cooperating SUs. Malekiet
al. find the minimum number of cooperating SUs that attains
the required detection and false alarm probability performance
[12]. The fewer SUs are engaged in sensing, the less time
is spent for reporting the sensing outcomes, and thereby the
more time is spent for transmission. Moreover, sensing reports
from unreliable SUs may decrease the sensing performance.
SUs with unreliable sensing information are refrained from
reporting their sensing results to save energy in [13]. In
addition, a cluster-based decision collection instead of ahigh
power-consuming broadcasting scheme, is also proposed in
[13]. The cluster-based scheme adapts the transmission power
considering the most distant node. The decision fusion rule
(i.e., how the collected sensing information is processed to
give the final decision on the existence of PU) at the fusion
centre also affects the energy efficiency. Pehet al. [14] tune
the k parameter in k-out-of-N fusion rule at each frame as
well as the threshold for energy detection scheme at the fusion
centre.Heterogeneity of PU channels and SU link conditions
were ignored in these works making the investigated scenarios
less realistic. In addition, assigning the same sensing duration
for all SUs regardless of their link conditions may result in
waste of energy at SUs with good link conditions. In contrast
to these works, we incorporate the effect of signal-to-noise
ratios of SUs into our scheme to calculate appropriate sensing
duration for each SU and frequency pair.

Works in [15, 16] and [17] present various solutions for
improving the energy-efficiency of CSS. Sensing schedulingis

modelled as a utility maximization problem subject to a certain
cooperative detection probability in [15]. In addition, a con-
straint on minimum discovered transmission time is imposed
in order to ensure a certain QoS together with heterogeneous
detection probability requirements. Similarly, Zhanget al.
determine the number of SUs to sense each channel as well as
the sensing duration in a slot [16] while Haoet al. study the
optimal partition of the SUs into coalitions such that the total
energy efficiency of all coalitions are maximized [17]. Workin
[16] utilizes partially observable Markovian decision process
(POMDP) framework and tunes the punishment parameter for
higher energy efficiency. A distributed solution using coalition
formation is proposed in [17].

Apart from these works, the main contributions of this paper
can be summarized as follows:

• We consider a scenario in which the number of SUs is
larger than the number of primary channels. Therefore,
our main concern is to select the SUs to sense all channels
while the works in [15, 16] and [17] select a subset of
primary channels to be sensed by all SUs. In addition, in
the previous works an SU can sense at most one channel
whereas in this work, SUs can sense multiple channels
as long as they finish sensing in the dedicated time.

• Unlike these works, we account for the heterogeneity of
the SU link conditions (i.e., received SNR of the PU sig-
nal at the SU). Therefore, our CSS solution additionally
determines which SUs should sense a channel. Our paper
diverges from the previous works, which only determine
the number of SUs to sense a specific primary channel.

• Moreover, sensing duration associated with an SU is
adjusted according to the link SNR as opposed to the
prior works, which consider identical sensing duration
for all SUs. Simply, our approach bases on the fact that
channels with high SNR values require shorter sensing
time for a required detection probability and false alarm
probability. Hence, an SU can save energy by sensing one
of the channels with higher SNR as opposed to the fixed
sensing duration scheme.

III. SYSTEM MODEL

We assume an infrastructure based CRN withN secondary
users,M channels, and a Cognitive Radio base station (CBS).
Our consideration is a specific case where the number of
channels is less than the number of SUs, i.e.N ≫ M . We
believe that in a cellular network this assumption generally
holds as there are lots of users within the coverage area of
the base station. If that is not the case, the CBS may select a
subset of the channels based on their past data like availability,
capacity, etc. such that there are enough SUs to sense all
selected channels. This selection procedure has the potential to
reduce energy consumption by eliminating the less favorable
channels. SUs operate in a time synchronized manner within a
frame based communication protocol. Each frame starts witha
fixed length quiet sensing period of durationT s during which
SUs sense the channel(s) assigned to them. An SU may sense
multiple channels during the quiet period as long as the total
time dedicated to sensing by the SU does not exceedT s.
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Then, all SUs that sense at least one channel report their
hard decisions about these channels (0 or 1, indicating the
absence or presence of primary user) to the CBS. We assume
that the secondary network has a dedicated common control
channel that is used for this reporting task and other control
messages. The CBS combines the decisions using OR rule.
The remaining time is used for transmission. We also assume
that the SUs and the channels are heterogeneous. That is to
say, the SNR of each SU over each channel is different due
to different proximities from the PUs and different channel
conditions (shadowing, fading, etc.). We assume the existence
of a receiver block at each SU to estimate the SNR level and
feedback it to the CBS through the error-free feedback channel
[18]. With the help of the receiver block, we assume that the
instantaneous SNR values are known. However, if that is not
the case, long term SNR values can also be used. This time,
the techniques discussed in this paper can also be applied.
However, the main objective becomes the minimization of
expected energy, instead of the actual one. The frame structure
is shown in Fig. 1 whereT , T rep, andτm,n are the total frame
length, the time dedicated for reporting sensing results, and the
time thatSUn senses channelm, respectively.
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Fig. 1: A frame starts with a sensing period followed by
reporting and transmission periods.

Our main goal is to sense allM channels with minimum
energy and sufficient accuracy such that cooperative detection
probability of each channel is greater than some predefined
threshold value (denoted bythQ

d) and cooperative false alarm
probability is smaller than another threshold (denoted by

thQ
f ). Since channel sensing consumes energy, an SU may

not utilize all of the quiet period duration for sensing if not
necessary. On the other hand, it is desirable to sense a channel
with a couple of SUs instead of a single SU (even though, it
may satisfy the thresholds) in order to increase robustness.
Hence, there is a trade-off between energy consumption and
sensing reliability. The problem includes the assignment of
SUs to channel(s) for the sensing task together with the
decision of the sensing time for the channel(s) to be sensed
by each SU.

Let P f
m,n, P d

m,n, γm,n denote the probability of false
alarm, probability of detection, SNR forSUn over channel
m, respectively. If we assume thatP f

m,n is fixed, then for
a complex-valued PSK channel with circularly symmetric
complex Gaussian noise,P d

m,n is given by [1]

P d
m,n = Q

(

Q−1(P f
m,n)−

√

τm,nfsγm,n
√

2γm,n + 1

)

(1)

wherefs is the sampling frequency andQ is the complemen-
tary cumulative distribution of a standard Gaussian.

Theorem 1: P d
m,n is an increasing function ofτm,n. Fur-

thermore, it is also concave if

− 1
√
τm,n

+
γm,n

√
fs

(2γm,n + 1)
(Q−1(P f

m,n)−
√

τm,nfsγm,n) < 0.

(2)
This theorem is well known, and its proof is given in

Appendix A.
Lemma 1: P d

m,n is a concave function ofτm,n if P d
m,n >

0.5.
Lemma 1 is a straightforward application of Theorem 1.

The proof can be found in Appendix B.
Lemma 2: 1− P d

m,n is a non-negative decreasing function
of τm,n. It is also convex if the condition in (2) is satisfied.

Let Sm andQd
m denote the set of SUs sensing channelm,

and cooperative detection probability for channelm, respec-
tively. Using OR rule for decision combining gives

Qd
m = 1−

∏

n∈Sm

(1− P d
m,n)

= 1−
∏

n∈Sm

(

1−Q
(

Q−1(P f
m,n)−

√

τm,nfsγm,n
√

2γm,n + 1

))

.

Theorem 2: Qd
m is an increasing function ofτm,n. More-

over, it is also concave if the condition in (2) is satisfied
∀n ∈ Sm.

The proof of this theorem is given in Appendix C.

IV. OPTIMIZATION MODEL AND SOLUTION

METHODOLOGY

A. Energy Consumption Model

Let P s andEs
m,n be the power consumed during channel

sensing and energy dissipated bySUn for sensing channel
m, respectively.Es

m,n is equal to P sτm,n. Then, energy
consumption for channel sensing (denoted byEs) can be
written as

Es =

M
∑

m=1

N
∑

n=1

P sτm,n.

Besides channel sensing, SUs also consume energy by
transmitting their local results to the CBS. We assume that
SU transmits its sensing report as a single packet regardless
of the number of channels sensed, and the reporting period is
long enough such that all SUs can send their packets. LetErep

n

denote the energy consumed for reporting the sensing result
to CBS, which depends on the location ofSUn relative to the
CBS. In addition, letSrep denote the set of SUs that perform
sensing in this frame that are required to report their local
decisions to the CBS. Then, the total energy consumption for
reporting is given by

Erep =
∑

n∈Srep

Erep
n .

This model assumes that all reporting packets are trans-
mitted successfully. If that is not the case, the model can be
modified as follows: Letp denote the probability of successful
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packet transmission that is geometrically distributed, then the
expected number of transmission attempts for an SU is given
by 1/p, andErep is given byErep = 1/p

∑

n∈Srep

Erep
n .

B. Optimization Model for Energy Efficient (EE) Sensing

We first define the decision variables that are used in the
optimization model. Let

τm,n = time spent bySUn for sensing channelm,

xm,n =

{

1, if channelm is sensed bySUn

0, o/w.
,

yn =

{

1, if SUn transmits sensing result to CBS

0, o/w.
.

From (1), for a givenP d
m,n value the requiredτm,n can be

written as

τm,n =

(

Q−1(P f
m,n)−Q−1(P d

m,n)
√

2γm,n + 1

γm,n

√
fs

)2

. (3)

In addition, letτmin
m,n denote the sensing time required forSUn

in order to achieve aP d
m,n value of 0.5. It can be calculated

from (3) as

τmin
m,n =

(

Q−1(P f
m,n)

γm,n

√
fs

)2

.

We assume that a channel should be sensed by at leastδmin

SUs. δmin defines the minimum number of cooperating SUs
for a channel. The selection ofδmin value is a design criterion.
In order to encourage cooperation and improve robustness, a
δmin value greater than one is preferred. On the other hand,
regarding energy efficiency concern,δmin should not be high
as each additional SU used for sensing incurs sensing energy
consumption, and maybe reporting energy.

If we assume thatP f
m,n = P f ∀m,n, thenQf

m is given by

Qf
m = 1−

∏

n∈Sm

(1− P f ).

SinceQf
m ≤ thQ

f , then the maximum number of cooperating
SUs, denoted byδmax, can be calculated as

δmax = ⌊ log (1− thQ
f )

log (1− P f )
⌋. (4)

In other words,δmax is the maximum number of cooperating
SUs that satisfy the cooperative false alarm constraint. The
solution methodology we apply can also be used for the case
whereP f

m,n values differ. We discuss this case in detail at the
end of the following section. The optimization model can be
written as

P1: min w =

M
∑

m=1

N
∑

n=1

P sτm,n +

N
∑

n=1

Erep
n yn (5)

subject to:

τm,n ≥ τmin
m,n xm,n ∀m ∈ M, ∀n ∈ N (6)

M
∑

m=1

τm,n ≤ T syn ∀n ∈ N (7)

N
∑

n=1

xm,n ≥ δmin ∀m ∈ M (8)

N
∑

n=1

xm,n ≤ δmax ∀m ∈ M (9)

M
∑

m=1

xm,n ≤ Myn ∀n ∈ N (10)

thQ
d −Qd

m ≤ 0 ∀m ∈ M (11)

xm,n, yn ∈ {0, 1} ∀m ∈ M, ∀n ∈ N (12)

τm,n ≥ 0 ∀m ∈ M, ∀n ∈ N, (13)

where this timeQd
m is defined as

Qd
m = 1−

N
∏

n=1

(

1−Q
(

Q−1(P f )−
√

τm,nfsγm,n
√

2γm,n + 1

)

xm,n

)

.

Hence, SUs withxm,n value of 0 contribute 1 to the above
multiplication, whereas those withxm,n value of 1 contribute
(1− P d

m,n).
The objective in (5) minimizes the total energy consumption

associated with sensing for a frame. Constraint (6) specifies
that if SUn senses channelm, the sensing duration should be
at leastτmin

m,n . In this way, we guarantee that the concavity
condition always holds. Constraint (7) denotes that total time
spent by an SU for sensing should be less than or equal to
the sensing duration of a frame. It also forces allτm,n values
associated withSUn to zero, ifyn = 0. Constraint (8) requires
that each channel should be sensed by at leastδmin SUs.
Similarly, Constraint (9) limits the number of cooperatingSUs
for a channel in order to satisfy the false alarm probability
threshold. Constraint (10) forcesyn value for an SU to 1, if
that SU senses any channels. The requirement for cooperative
detection probability being greater than the threshold foreach
channel is expressed by Constraint (11). Finally, Constraints
(12) and (13) specify the types of variables.

The above problem is a Mixed Integer Non-linear Pro-
gramming problem because of Constraint (11), even though
its objective is linear. We resort to the outer linearization
algorithm to solve the above problem.

C. Outer Linearization

As proven before, once thexm,n values are fixed,Qd
m value

is concave in terms ofτm,n. Thus, Constraint (11) is convex,
and the outer linearization procedure can be used to find
the optimal solution [19]. Outer linearization works by first
ignoring the mixed integer non-linear constraints to obtain an
initial solution. If the solution satisfies all previously ignored
constraints, then it is optimal. On the other hand, if it does
not, then the most violated constraint is linearized using the
current solution, and added to the current problem as a new
constraint to obtain another solution. The linearization process
goes on until all constraints are satisfied with anǫ tolerance.
Since the constraints are convex, the procedure is guaranteed
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to terminate in finite number of steps [20]. The steps of the
procedure are as follows:

• Step 1: Initialize the iteration counter,k = 1. Solve the
initial Mixed Integer Linear Programming problem (P2)
formed by ignoring Constraint (11), and obtain the initial
solutionτ1m,n, x1

m,n, y1n.
• Step 2: Identify the most violated constraint,gm, among

theM constraints of (11) with the current solution (τkm,n,
xk
m,n, andykn). That is to say,gm is the cooperative detec-

tion probability constraint corresponding to the channel
that deviates from the threshold value most. Letvm
denote the corresponding deviation.

• Step 3: If the maximum violation is smaller thanǫ, stop;
the current solution is optimal withǫ feasibility tolerance.
Otherwise, proceed with Step 4.

• Step 4: Linearize the most violated constraint by adding
the following linear constraint toP2:

∇gm(. . . xk
m,i, . . . τ

k
m,i, . . . )

T



















...
xm,i − xk

m,i
...

τm,i − τkm,i
...



















+ vm ≤ 0

where∇gm(. . . xk
m,i, . . . τ

k
m,i, . . . ) is the gradient ofgm

evaluated at the current solution. Its individual entries are
given by

∂gm
∂xm,i

= −Q
(

Q−1(P f )−
√

τm,ifsγm,i
√

2γm,i + 1

)

Bm,i

∂gm
∂τm,i

= − xm,iγm,i

√
fs

2
√
τm,i

√
2π
√

2γm,i + 1
Am,iBm,i

whereBm,i is given by

N
∏

n=1,n6=i

[

1−Q
(

Q−1(P f )−
√

τm,nfsγm,n
√

2γm,n + 1
)xm,n

)]

.

Setk = k+1, solve the current problem to obtainτkm,n,
xk
m,n, andykn values. Proceed with Step 2.

In the remainder of this paper, we refer to the application
of outer linearization to Problem P1 as EE, which stands for
energy efficiency.

For the case whereP f
m,n values differ, false alarm constraint

assumes the following form

1−
N
∏

n=1

(1 − P f
m,nxm,n)− thQ

f ≤ 0.

The outer linearization procedure can still be applied in this
case, but this time2M constraints (cooperative false alarm
probability constraint in addition to cooperative detection
probability constraint for each channel) need to be checked
for feasibility. The other steps of the procedure are the same.

D. Transmission Time Maximization (TXT)

The aforementioned model optimizes the total energy dedi-
cated to the sensing task while achieving satisfactory sensing

performance in terms of detection and false alarm probabili-
ties. However, in this approach, sensing duration of a frame
(denoted byT s) is constant. Hence, if we denote the frame
duration byT and reporting time of the sensing outcomes by
T rep, which are also constant, then the transmission time for
data packets is given byT−T s−T rep. Another approach is to
maximize the data transmission duration of a frame. This time,
we treatT s as a decision variable. Assuming a quiet sensing

period,T s is given bymax
n

{
M
∑

m=1

τm,n}. In other words,T s

is the maximum of total sensing times for all SUs as the
network should wait for the SU with the longest total sensing
time before moving on the next phase of a frame. Then, the

objective becomesmax z1 = T − T rep − max
n

{
M
∑

m=1

τm,n}.

SinceT andT rep are constants, this objective is equivalent to

min z2 = max
n

{
M
∑

m=1

τm,n} subject to Constraints (6), (8), (9),

(10), (11), (12), and (13). To solve this problem, we resort to
the outer linearization procedure again as the constraintsare
almost the same.

V. HEURISTIC APPROACHES

In this section, we propose two suboptimal but fast heuristic
approaches for the energy-efficient sensing problem. The first
one focuses on greedily minimizing sensing energy while
disregarding the reporting energy. On the other hand, the
second heuristic initially considers the reporting energy, then
it regards the sensing energy.

Unlike the previous two approaches that support different
detection probabilities for different channel and user pairs,
these heuristics require a fixed detection probability,P d, for
all channels and users for the sake of simplicity and quick
execution time. This approach is frequently applied in the
literature [4, 12, 14]. For both heuristics, we sense each
channel withδmin SUs. Thus, the requiredP d value can be
calculated as

P d = max{1− (1− thQ
d)1/δ

min

, P d
min},

which guarantees a minimum detection probability ofP d
min.

As theP f
m,n values are assumed to be the same for all SU-

channel pairs as before, the goal of the heuristics is to find
the best SU/channel assignment.

A. Sensing Energy Minimization Heuristic (SEM)

This heuristic minimizes the sensing energy by selecting
SUs with high SNR values for a channel while disregarding
reporting energy. Initially, remaining sensing time of allSUs
are equal toT s. The heuristic starts with the first channel, sorts
the SUs in descending order based on theirγm,n values, and
selects the first SU in the list. Then, it calculates the required
τm,n value for the selected SU to obtain a detection probability
of P d. If the remaining sensing time of the selected SU is
greater thanτm,n, the selected SU is assigned to sense channel
m. Otherwise, we move on to the next SU. The algorithm runs
until δmin SUs are assigned to all channels. The pseudo code
for this heuristic is given in Algorithm 1.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 6

Algorithm 1 Sensing Energy Minimization Heuristic

Require: P d, δmin, M , N , γm,n, T s

1: remainingT ime[n] = T s ∀n
2: for m = 1 to M do
3: Sort SUs in descending order ofγm,n and letindex be

the list of indices of the sorted entries such thatindex[1]
corresponds to the index ofSU with the highestγm,n

andindex[N ] corresponds to the index ofSU with the
lowestγm,n.

4: assignmentNo = 0, k = 1
5: while assignmentNo < δmin do
6: n = index[k]
7: SelectSUn as a candidate and calculateτm,n value

to achieveP d using (3).
8: if τm,n ≤ remainingT ime[n] then
9: remainingT ime[n] = remainingT ime[n] −

τm,n

10: assignmentNo = assignmentNo+ 1
11: end if
12: k = k + 1
13: end while
14: end for

Starting with the first channel, the heuristic selectsδmin SUs
with the bestγm,n values and enough remaining sensing time
for the sensing task. The outer loop takesO(M) steps. Sorting
SUs based on theirγm,n values is O(N logN), whereas
the inner loop isO(N). Hence, the total running time is
O(MN logN).

B. Reporting Energy Minimization Heuristic (REM)

The main difference between the Reporting Energy Mini-
mization (REM) heuristic and SEM is that REM first considers
SUs that are already assigned to sense a channel. LetSrep be
the set of SUs that are going to perform sensing and transmit
their reports for this frame. Similarly,Snrep is the set of SUs
that are not assigned to sense a channel yet. Initially,Srep = ∅,
Snrep = {SU1, SU2, . . . , SUN}. The heuristic first looks for
SUs among the ones inSrep in order to save reporting energy.
If enough SUs are not found, then it moves on toSnrep. As
in the previous case, SUs inSrep andSnrep are processed in
decreasing order ofγm,n values for the considered channel.
The pseudo code of REM is given in Algorithm 2.

This time both inner while loops (line 6 and line 18) take
O(N), and the sorting operations are stillO(N logN). As in
the previous case, the total running time isO(MN logN).

VI. RESULTS

We assume that received SNR at an SU (γm,n) follows
an exponential distribution with meanµSNR. In order to be
consistent, we use the sameγm,n values for a givenµSNR

across different runs. For a given parameter set, we first run
the TXT method to obtain the ideal sensing time denoted by
T s
opt. For the other methods, we scale this value with anα

value (α > 1), and useαT s
opt as the sensing time for the

Algorithm 2 Reporting Energy Minimization Heuristic

Require: P d, δmin, M , N , γm,n, T s

1: remainingT ime[n] = T s ∀n
2: Srep = ∅, Snrep = {SU1, SU2, . . . , SUN}
3: for m = 1 to M do
4: Sort SUs inSrep in descending order ofγm,n and let

indexRep be the list of indices of the sorted entries.
5: assignmentNo = 0, k = 1
6: while (assignmentNo < δmin) && (k ≤ |Srep|) do
7: n = indexRep[k]
8: SelectSUn ∈ Srep as a candidate and calculateτm,n

value to achieveP d using (3).
9: if τm,n ≤ remainingT ime[n] then

10: remainingT ime[n] = remainingT ime[n] −
τm,n

11: assignmentNo = assignmentNo+ 1
12: end if
13: k = k + 1
14: end while
15: if assignmentNo < δmin then
16: Sort SUs inSnrep in descending order ofγm,n and

let indexNrep be the list of indices of the sorted
entries.

17: k = 1
18: while assignmentNo < δmin do
19: n = indexNrep[k]
20: SelectSUn ∈ Snrep as a candidate and calculate

τm,n value to achieveP d using (3).
21: if τm,n ≤ remainingT ime[n] then
22: remainingT ime[n] = remainingT ime[n] −

τm,n

23: assignmentNo = assignmentNo+1,Srep =
Srep ∪ {SUn},Snrep = Snrep \ {SUn}

24: end if
25: k = k + 1
26: end while
27: end if
28: end for

other methods. The values for the other parameters are given
in Table I.

By using (4), we obtainδmax=10 for the givenP f and

thQ
f values. The reader should note that the presented results

are for a single frame. Hence, the cumulative effect will be
much higher if multiple frames are considered. Furthermore,
the processing order of the channels is important for the given
heuristics as they converge to local optimal solutions. Even
though the channels are ordered naturally in the given pseudo-
code, we also run both heuristics with randomly ordered
channels 20 times. The results given below for the heuristics
are the best of the 21 runs in terms of energy consumption.

We first observe the total energy consumption and its
individual components in Figs. 2(a) and 2(b) forµSNR values
of -5 dB and 2 dB, respectively. For lowµSNR, the sensing
component of the energy consumption is more dominant. On
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TABLE I: Parameters values

M 40
N {160, 180, 200, 220, 240}
fs {1 kHz, 10 kHz}
µSNR [-10 dB, 5 dB] with 1 dB increments
δmin 3
P f 0.01
α [1.1, 3] with 0.1 increments
T s αT s

opt

ǫ 10−6

P s 1000 mW
Erep

n 1 mJ ∀n
P d
min 0.5

thQ
d 0.9

thQ
f 0.1

the other hand, reporting energy consumption becomes the
major component whenµSNR is higher. As we can see, the
reporting energy consumption is similar in both cases. Hence,
the difference stems from the sensing energy consumption.
With high µSNR, the time required to achieve a particular
detection probability decreases, which in turn decreases the
required sensing time. In both cases, TXT achieves the worst
performance since its objective does not consider the energy
consumption at all. On the other hand, the performance of EE
is always superior compared to other methods. Furthermore,
SEM is slightly superior compared to REM for low SNR
because it prioritizes the sensing energy. Contrariwise, REM
achieves lower total energy for high SNR value since it first
considers the reporting energy component.

The effect of changingµSNR on total sensing energy
consumption can be seen in Fig. 3. Fig. 3(a) shows a broader
range whereas Fig. 3(b) shows the high SNR regime. Initially,
increasingµSNR values have a significant impact on total
energy consumption for all methods whereas beyond a certain
point the benefits are minimal. In this case, EE provides
7% improvement over the next best method, namely SEM
heuristic, whenµSNR is -10 dB. Moreover, the improvement
over other methods is much better whenµSNR assumes higher
values which can be seen in Fig. 3(b). As an example, using
EE results in 22% reduction in total energy consumption
compared to the next best method, REM this time, whenµSNR

is 0 dB. In addition, both figures support our previous claim
that SEM achieves better performance than REM for low SNR
values, while the reverse is true for high SNR values.

Fig. 4 illustrates the change in total energy consumption
with respect to the increase in the number of SUs. Apart from
TXT method, all schemes yield better results asN increases.
The main reason for this performance improvement is the
diversity brought by the added SUs. That is to say, with more
SUs, the probability of finding an SU with a highγm,n value
increases for a given channelm. On the other hand, TXT
method shows slight variations since its goal is not relatedto
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(a) Low SNR,µSNR = -5 dB.
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(b) High SNR,µSNR = 2 dB.

Fig. 2: Energy consumption profiles withN = 200,δmin =
3, α = 2.

energy consumption.
The total energy consumption and its individual components

for fs = 10 kHz case are presented in Fig. 5. In comparison
to Fig. 2, increasingfs has a similar effect as increasing
SNR value. However, the effect of SNR is more prominent.
For instance, with all other factors constant, increasingµSNR

from -5 dB to 2 dB (almost a fivefold increase) results in
nearly 83% reduction in energy consumption for EE. On the
other hand, increasingfs tenfold from 1 kHz to 10 kHz gives
76% decrease for EE. These observations are in accordance
with (3). In addition, similar to the case in Fig 3(b), with a
higher sampling rate, REM heuristic provides lower energy
consumption than SEM.

The energy consumption values for various values ofα are
given in Figs. 6(a) and 6(b) forµSNR values -5 dB and 2
dB, respectively. Asα is not a parameter for TXT, it is not
affected by the change inα. For low α values, the results
for SEM and REM are not shown because both heuristics
fail to provide a feasible solution. For the low SNR regime,
both EE and SEM produce lower energy consumption with
increasingα but the decrease is marginal. Unlike SEM and EE,
the results for REM first decrease and then start to increase.
The rationale behind this pattern can be explained as follows:



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 8

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

7000

µSNR

E
ne

rg
y 

(m
J)

 

 

TXT
EE
SEM
REM

(a) µSNR between -10 dB and 5 dB.

−2 −1 0 1 2 3
50

100

150

200

250

300

µSNR

E
ne

rg
y 

(m
J)

 

 

TXT
EE
SEM
REM

(b) µ
SNR between -2 dB and 3 dB.

Fig. 3: Effect ofµSNR on total sensing energy consumption
with N = 200,δmin = 3, α = 2.
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Fig. 4: Effect of number of SUs on total sensing energy
consumption withµSNR = -5 dB, δmin = 3, α = 2.
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Fig. 5: Energy consumption profiles withN = 200,δmin =
3, α = 2, fs = 10 kHz,µSNR = -5 dB.

since REM prefers SUs that are already assigned a channel
for sensing when selecting SUs for channelm, a long sensing
duration causes SUs with lowγm,n to be assigned to channel
m. We observe that sensing energy component dominates in
low SNR regime, so this causes an increase in total energy
consumption for REM. On the contrary, for high SNR regime
REM produces lower energy consumption values as reporting
energy component is the dominating factor. Both figures show
that with only a small amount of additional sensing time, great
energy savings are possible.

To sum up, all three energy minimization methods (EE,
SEM, and REM) provide significant energy savings compared
to a pure transmission time maximization technique. In all
cases, EE achieves the best energy values whereas the perfor-
mance of SEM and REM depend on the parameter values. On
the one hand, a lowµSNR or a highα favors SEM. On the
other hand, a highµSNR or a highfs supports REM. As both
heuristics have very low complexities, both can be executed
in a short amount of time, and one can select the method with
the better energy consumption.

VII. C ONCLUSION

In this paper, we have formulated the energy-efficient coop-
erative sensing scheduling problem for a CRN and presented
various approaches for this problem. Each scheme ensures the
minimum detection probability constraint as a PU protection
criteria and the maximum false alarm probability constraint as
CRN operability criteria in each channel. EE, SEM, and REM
aim to minimize energy expenditure for sensing while TXT
minimizes time spent for the sensing task in order to leave
more time for data transmission. We have investigated the
performance of our proposals with various parameters. To find
the optimal solution we have employed the outer linearization
method. Numerical evaluations have shown that by sacrificing
very little data transmission time, significant amount of energy
can be saved. Furthermore, reporting energy is an important
factor in the energy consumption, especially, when the SNR
or sampling frequency is high.

As future work, we plan to incorporate different fusion rules,
e.g. AND, MAJORITY, etc. into our model. Moreover, we
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Fig. 6: Effect of sensing duration (Ts) under low and high SNR values withN = 200,δmin = 3.

also would like to analyze the impact of channel switching
delay and energy consumption of channel switching on sensing
energy consumption. Another point to pursue is to treat false
alarm probabilities as decision variables, and jointly optimize
them together with sensing times.

APPENDIX A
PROOF OFTHEOREM 1

The first derivative ofP d
m,n with respect toτm,n is

dP d
m,n

dτm,n
=

γm,n

√
fs

2
√
τm,n

√
2π
√

2γm,n + 1
Am,n

where

Am,n = exp



−1

2

(

Q−1(P f
m,n)−

√

τm,nfsγm,n
√

2γm,n + 1

)2


 .

The first derivative is always positive, hence,P d
m,n is an

increasing function ofτm,n.
The second derivative ofP d

m,n with respect toτm,n is given
by

d2P d
m,n

dτ2m,n

=
γm,n

√
fsAm,n

4
√
2π
√

2γm,n + 1

[

− 1
√

τ3m,n

+
γm,n

√
fs

τm,n(2γm,n + 1)

(Q−1(P f
m,n)−

√

τm,nfsγm,n)

]

.

The second derivative is negative if

−1
√

τ3m,n

+
γm,n

√
fs

τm,n(2γm,n + 1)
(Q−1(P f

m,n)−
√

τm,nfsγm,n) < 0.

Reducing theτm,n term leads to

− 1
√
τm,n

+
γm,n

√
fs

(2γm,n + 1)
(Q−1(P f

m,n)−
√

τm,nfsγm,n) < 0.

Thus,P d
m,n is a concave function ofτm,n if the condition

in (2) is satisfied.

APPENDIX B
PROOF OFLEMMA 1

By combining (1) and (2), we get

− 1
√
τm,n

+
γm,n

√
fsQ−1(P d

m,n)
√

2γm,n + 1
< 0.

The first term is always negative, whereas the second term
is negative ifP d

m,n > 0.5. Since it is reasonable to assume a
P d
m,n value greater than 0.5, we can safely say thatP d

m,n is a
concave function ofτm,n most of the time.

APPENDIX C
PROOF OFTHEOREM 2

Let τn denote theτ vector with n entries that consists
of τm,n values for channelm. Moreover, letfm,k andhm,k

denote(1 − P d
m,k), and fm,1fm,2 . . . fm,k, respectively. The

proof is by induction on the number of elements inSm denoted
by |Sm|.

• |Sm| = 2: Without loss of generality, assume SUs 1 and
2 are inSm. We can rewriteQd

m as1− hm,2.
The gradient ofhm,2 is given by

∂hm,2

∂τ2
=

[

− γm,1

√
fsAm,1

2
√
τm,1

√
2π
√

2γm,1 + 1
fm,2 ,

− γm,2

√
fsAm,2

2
√
τm,2

√
2π
√

2γm,2 + 1
fm,1

]

where

Am,n = exp



−1

2

(

Q−1(P f
m,n)−

√

τm,nfsγm,n
√

2γm,n + 1

)2


 .

Both terms are always negative, thus,hm,2 is a decreasing
function of τ2. Therefore,Qd

m is an increasing function

of τ2 since ∂Qd
m

∂τ2
= −∂hm,2

∂τ2
. In addition, as shown

in Lemma 2, bothfm,1 and fm,2 are non-negative,
decreasing, and convex functions so their multiplication,
hm,2, is also convex [21], which leads to the concavity
of Qd

m.
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• Let us assume that the theorem holds for|Sm| = k and
show that it also holds for|Sm| = k + 1. This timeQd

m

can be written as

Qd
m = 1− hm,k+1 = 1− hm,kfm,k+1.

The gradient ofhm,k+1 is given by

∂hm,k+1

∂τk+1

= [
∂hm,k

∂τk+1

fm,k+1, hm,k
∂fm,k+1

∂τk+1

].

Let us focus on the first term. Since∂hm,k

∂τk+1

is negative
by induction, andfm,k+1 is non-negative, then their
multiplication is negative. For the second term,hm,k

is a non-negative function, and
∂fm(k+1)

∂τk+1

is negative by
Lemma 2. Thus, their multiplication is also negative.
Since both terms are negative,hm,k+1 is a decreasing
function of τk+1.
We apply the same logic as in the previous step to prove
the convexity ofhm,k+1. Both hm,k and fm,k+1 are
decreasing convex functions (convexity ofhm,k comes
from induction), then their multiplication,hm,k+1, is also
convex. Thus,Qd

m is a concave and increasing function
of τk+1.

Proving both the base step and the induction step leads to the
conclusion thatQd

m is an increasing concave function ofτm,n

if (2) is satisfied.
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