IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 1

Energy-Efficient Multi-Channel Cooperative
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Abstract—Spectrum sensing is an important aspect of Cogni- voids and for protecting the PU communications. Hence, a

tive Radio Networks. Secondary users should sense the chaels  sensing period is reserved at the beginning of each frame for
periodically in order to ensure primary user protection. Sensing the spectrum sensing task

with cooperation among several secondary users is more rolti Previ ks sh d the i . .
and less error prone. However, cooperation also increasese revious works showe € Increase In sensing accuracy

energy spent for sensing. Considering the periodic nature fo With the increase in sensing time [1]. On the other hand, SUs
sensing, even a small amount of savings in each sensing perio which are mostly mobile devices should be energy-efficient
leads to considerable improvement in the long run. In this as they use their battery power. Therefore, from the energy
paper, we consider the problem of energy-efficient spectrum (throughput) efficiency perspective, the more time is spent
sensing scheduling with satisfactory primary user protedbn. h . '

Our model exploits the diversity of secondary users in their on se.nsmg the.more energy_ls .consumed for overhead and
received signal-to-noise-ratio value of the primary signh to less time remains for transmission. On the other hand, the
determine the sensing duration for each user/channel pairdr throughput of the network is a function of the detection
higher energy efficiency. We model the mentioned problem as accuracy (i.e., probability of detectio,;, and probability of

an optimization problem with two different objectives. The first false alarm,P;). Hence, there is a trade-off between sensing

one minimizes the energy consumption whereas the second one dt LT durati for both th hout and
minimizes the spectrum sensing duration in order to maximiz ana transmission durations for bo roughput and energy

the remaining time for data transmission. We solve both prokems ~ efficiency.

using outer linearization method. In addition, we present wo In addition, it is shown that cooperation among the SUs
sub-optimal but efficient heuristic methods. We provide an increases the detection reliability of spectrum sensinthat
extensive performance analysis of our proposed methods ued gy nense of additional communication overhead that ineseas

various number of secondary users, average channel signtd- . . .
noise-ratio, and channel sampling frequency. Our analysiseveal with the number of cooperating SUs [2]. Different from

that all proposals with energy minimization perspective povide Cooperative sensing in a single chanrapperative sensing
significant energy savings compared to a pure transmissiorime  scheduling(CSS) has to balance the trade-off between the

maximization technique. detection accuracy of a single channel and the number of
Index Terms—Cooperative sensing scheduling, energy-efficient channels being sensed in a multi-channel CRN. That is to
sensing, sensing task assignment, heterogeneous sensing. say, the more SUs are assigned to sense a single channel,

the higher is the probability of detection for that channel
at the expense of leaving some channels being unexplored
While cooperative sensing has been well-investigated, CSS
NCREASING demand for wireless communications callstill remains unexplored. It is shown in previous works that
for better spectrum utilization. One of the most promisin@SS is NP-hard [3]. Taking the energy efficiency concerr int
solutions is the dynamic spectrum access (DSA) paradigracount makes this problem even more complicated.
which allows the opportunistic access of spatio-tempyprall In this paper, we focus on energy efficiency of cooperative
unused wireless spectrum by cognitive radio networks (CRNpectrum sensing in a multi-channel CRN with heterogeneous
In a CRN, a secondary user (SU) transmits through a freJ channels in terms of received signal-to-noise ratio (BNR
guency channel which is licensed to primary users (PU) bualues. Since scheduling the SUs to sense a number of
is currently unoccupied. However, DSA has the challengdannels in a CRN is a difficult task [3], we propose three
to guarantee that SUs vacate the spectrum whenever a $diemes for energy-efficient CSS. The first one uses outer
transmits simultaneously at the band of SU transmissidmearization to find the optimal solution whereas the Iatite
Hence, SUs must perform spectrum sensing. The accuracyadé efficient heuristic methods. Apart from these three, la@ a
spectrum sensing is paramount for both finding the spectealalyze the problem from the transmission time point of view
as time spent for sensing is also time lost for transmission.

Copyright (c) 2013 IEEE. Personal use of this material ismiged.  The rest of the paper is organized as follows: In Section I,
However, permission to use this material for any other psepomust be

obtained from the IEEE by sending a request to pubs-peronis@ieee.org. we r(_ewse the related work c_m e_nergy eff|C|e_ncy In spectrum
Salim Eryigit and Tuna Tugcu are with the Department of Cotepu Sensing and state our contributions to the literature. lo- Se

Engineering, Bogazici University, Istanbul, 34342 Turkeymail: {eryigit,  tjon I, we define the Cooperative sensing system model and

tugcu@boun.edujr Suzan Bayhan is with Helsinki Institute for Information . . .
Technology HIIT, Aalto University, Finland, e-mai{bayhan@hitt.f. introduce the basic theorems used in the formulated energy-

efficient CSS scheme. Section IV first formulates the problem
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and presents the methodology for finding the optimal solmodelled as a utility maximization problem subject to a&iert
tion. Proposed heuristic schemes are described in Sectiorcdbperative detection probability in [15]. In addition, ane

and their performances are evaluated in Section VI. Finalstraint on minimum discovered transmission time is imposed
Section VII concludes the paper. in order to ensure a certain QoS together with heterogeneous
detection probability requirements. Similarly, Zhaeg al.
determine the number of SUs to sense each channel as well as

1. RELATED WORK AND CONTRIBUTIONS . T .
the sensing duration in a slot [16] while Hao al. study the

Energy efficiency of CRNs has recently gained interest agtimal partition of the SUs into coalitions such that th&@ato
most of the initial works focus on the energy efficiency ognergy efficiency of all coalitions are maximized [17]. Wamk
spectrum sensing [4-9] and cooperative sensing [10-14]. B@] utilizes partially observable Markovian decision pess
et al. minimize the sensing energy consumption while meetif@ OMDP) framework and tunes the punishment parameter for
the constraint on undiscovered spectrum opportunitiesaf®d higher energy efficiency. A distributed solution using i@
adapt the period of spectrum sensing in order to attainfémation is proposed in [17].
balance between energy consumption and missed spectrumpart from these works, the main contributions of this paper
opportunities for a random access CRN [7]. Optimal sensig@gn be summarized as follows:

and transmission durations for an SU under both high and low,
SU power capacity are analytically derived in [8]. The efffec
of transmission, idling, and sensing power consumption are
analyzed in that work. Pedt al. devise an optimal policy for
a single SU to decide on the order of channels to be sensed
as well as when to stop sensing and start transmission [9].
While all these previous works have valuable contributions
they fall short of practicality. In practical CRNs, thereear
multiple and most likely heteregenous primary channels. In
this setting, one of the major concern of the operator is to
explore as many PU channels as possible meeting the PU
detection and false alarm constraints. Therefore, in ourkyo
we enforce the SUs to sense all PU channels colloboratively
to maximize the discovered spectrum opportunities.

Works in [12] and [13] consider the communication cost
for determining the number of cooperating SUs. Maleki
al. find the minimum number of cooperating SUs that attains
the required detection and false alarm probability perfomoe
[12]. The fewer SUs are engaged in sensing, the less time
is spent for reporting the sensing outcomes, and thereby the
more time is spent for transmission. Moreover, sensingrtepo
from unreliable SUs may decrease the sensing performance.
SUs with unreliable sensing information are refrained from
reporting their sensing results to save energy in [13]. In
addition, a cluster-based decision collection instead biga
power-consuming broadcasting scheme, is also proposed in

We consider a scenario in which the number of SUs is
larger than the number of primary channels. Therefore,
our main concern is to select the SUs to sense all channels
while the works in [15, 16] and [17] select a subset of
primary channels to be sensed by all SUs. In addition, in
the previous works an SU can sense at most one channel
whereas in this work, SUs can sense multiple channels
as long as they finish sensing in the dedicated time.
Unlike these works, we account for the heterogeneity of
the SU link conditions (i.e., received SNR of the PU sig-
nal at the SU). Therefore, our CSS solution additionally
determines which SUs should sense a channel. Our paper
diverges from the previous works, which only determine
the number of SUs to sense a specific primary channel.
Moreover, sensing duration associated with an SU is
adjusted according to the link SNR as opposed to the
prior works, which consider identical sensing duration
for all SUs. Simply, our approach bases on the fact that
channels with high SNR values require shorter sensing
time for a required detection probability and false alarm
probability. Hence, an SU can save energy by sensing one
of the channels with higher SNR as opposed to the fixed
sensing duration scheme.

Il. SYSTEM MODEL

[13]. The cluster-based scheme adapts the transmissioarpow We assume an infrastructure based CRN w\ttsecondary

considering the most distant node. The decision fusion ruigers,M channels, and a Cognitive Radio base station (CBS).
(i.e., how the collected sensing information is processed Our consideration is a specific case where the number of
give the final decision on the existence of PU) at the fusi@hannels is less than the number of SUs, Ne>> M. We
centre also affects the energy efficiency. Retal. [14] tune believe that in a cellular network this assumption gengrall
the k parameter in k-out-of-N fusion rule at each frame dsolds as there are lots of users within the coverage area of
well as the threshold for energy detection scheme at theriusthe base station. If that is not the case, the CBS may select a
centre.Heterogeneity of PU channels and SU link conditionsubset of the channels based on their past data like avatabi
were ignored in these works making the investigated scesarcapacity, etc. such that there are enough SUs to sense all
less realistic. In addition, assigning the same sensin@tiom selected channels. This selection procedure has the j@dtent
for all SUs regardless of their link conditions may result imeduce energy consumption by eliminating the less faverabl
waste of energy at SUs with good link conditions. In contrashannels. SUs operate in a time synchronized manner within a
to these works, we incorporate the effect of signal-to-@oiframe based communication protocol. Each frame startsavith
ratios of SUs into our scheme to calculate appropriate sgsifixed length quiet sensing period of duratidi during which
duration for each SU and frequency pair. SUs sense the channel(s) assigned to them. An SU may sense
Works in [15, 16] and [17] present various solutions fomultiple channels during the quiet period as long as thd tota
improving the energy-efficiency of CSS. Sensing schedusngtime dedicated to sensing by the SU does not excBed
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where f, is the sampling frequency ard is the complemen-
Then, all SUs that sense at least one channel report thairy cumulative distribution of a standard Gaussian.
hard decisions about these channels (0 or 1, indicating théTheorem 1. P?¢  is an increasing function Of . FUI-

m,n

absence or presence of primary user) to the CBS. We assuhwrmore, it is also concave if

that the secondary network has a dedicated common control T

channel that is used for this reporting task and other contre + JmnV s (QMPL ) — VT fsmm) < 0.
messages. The CBS combines the decisions using OR ruleY Tmn - (2¥mn +1) @)

The remaining time is used for transmission. We also assum
that the SUs and the channels are heterogeneous. That i
say, the SNR of each SU over each channel is different du
to different proximities from the PUs and different chann% 5
ditions (shadowing, fading, etc.). We assume the exdste : . o
con ) ' Ve Lemma 1 is a straightforward application of Theorem 1.
of a receiver block at each SU to estimate the SNR level alﬁjle roof can be found in Appendix B
feedback it to the CBS through the error-free feedback celann Lelr”Jnma >1_pl isa nopn?negativé decreasing function
[18]. With the help of the receiver block, we assume that th0 - It is‘ also cng;\lvex if the condition in (2) is satisfied
instantaneous SNR values are known. However, if that is notLZt’g andQ? denote the set of SUs sensing charmel'
the case, _Iong term SNR v_alues_ can also be used. This t'@%d cooperative detection probability for channel respec-
the techniques discussed in this paper can also be applltelz &ly. Using OR rule for decision combining gives
However, the main objective becomes the minimization of &Y

expected energy, instead of the actual one. The frame stmct@fn =1 H (1-— pi )

€This theorem is well known, and its proof is given in
?)endix A.
emma 1 PZ  is a concave function of,, ,, if P2 >

is shown in Fig. 1 wher&, T7°?, andr,, ,, are the total frame nes,,
length, the time dedicated for reporting sensing resutid the QY PL ) — ST ovmn
time thatSU,, senses channel, respectively. =1- H <1 -Q < UGl L ))
- V2¥mn +1
Reporting period T Theorem 2 Q¢ is an increasing function of,, ,,. More-
Sensing period, T® . Transmission period, T-T>-T* over, it is also concave if the condition in (2) is satisfied
Vn € S,.

The proof of this theorem is given in Appendix C.

Sensing time for a single channel,
¢ 9 IV. OPTIMIZATION MODEL AND SOLUTION

METHODOLOGY
Fig. 1: A frame starts with a sensing period followed by A. Energy Consumption Model
reporting and transmission periods. '

Tmn

Let P° and E, ,, be the power consumed during channel

. . : . sensing and energy dissipated for sensing channel
Our main goal is to sense al channels with minimum m resg ectivel Egy is g ual Eﬁ% Ther? ener
energy and sufficient accuracy such that cooperative detect P Y- B, d e ' 9y

probability of each channel is greater than some predefin%(gpsumptlon for channel sensing (denoted bg) can be

threshold value (denoted hyQ?) and cooperative false alarmwmten as M N
probability is smaller than another threshold (denoted by E* =YY P
»@7). Since channel sensing consumes energy, an SU may m=1n=1

not utilize all of the quiet period duration for sensing iftno Besides channel sensing, SUs also consume energy by
necessary. On the other hand, it is desirable to sense a@hagansmitting their local results to the CBS. We assume that
with a couple of SUs instead of a single SU (even though,dfy transmits its sensing report as a single packet regardles
may satisfy the thresholds) in order to increase robustneggthe number of channels sensed, and the reporting period is
Hence, there is a trade-off between energy consumption g8fg enough such that all SUs can send their packetsE] 8t
sensing reliability. The problem includes the assignment genote the energy consumed for reporting the sensing result
SUs to channel(s) for the sensing task together with the CBS, which depends on the location$l,, relative to the
decision of the sensing time for the channel(s) to be sensegds. |n addition, letS™*? denote the set of SUs that perform
by each SU. sensing in this frame that are required to report their local

Let P/ . P& .. Ymn. denote the probability of false decisions to the CBS. Then, the total energy consumption for
alarm, probability of detection, SNR fa§U,, over channel reporting is given by

m, respectively. If we assume that/, , is fixed, then for

a complex-valued PSK channel with circularly symmetric BT = Z B
complex Gaussian noisa!*’,;fm is given by [1] nesrer
o 1(P ) This model assumes that all reporting packets are trans-
pl -9 ( m,n) Tmmfﬂmvﬂ) ( mitted successfully. If that is not the case, the model can be
o V2Ymmn +1 modified as follows: Lep denote the probability of successful
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packet transmission that is geometrically distributeéntthe s
expected number of transmission attempts for an SU is given Z Tmn < T7Yn vnenN Y
by 1/p, and E™P is given by E"™? = 1/p > EI°P, .
nesre ,
e Z T > 0T Ym e M (8)
B. Optimization Model for Energy Efficient (EE) Sensing i < gmas Vim € M ©)
Tmn S m
We first define the decision variables that are used in the
optimization model. Let A
Tmon < My, Vn € N (20)
Tm,n = time spent bySU,, for sensing channeh, Z '
1,if channelm is sensed bysU,, 21 —QF <0 YmeM (11)
Tm.n — )
0, o/w. Ty Yn € {0,1} VYm € M,Yn € N (12)
_ J1,if SU, transmits sensing result to CBS Tmn 20 ¥m €M, Vn €N, (13)
=90, 0. ' where this timeQ? is defined as

From (1), for a givenP?  value the required,, , canbe _, ) N ) Q VP — /T fs¥mm
written as Qm = —H -Q NS Tom | -

2
o (Q_l(PfQ,n) - QN (PL )\/2Vmn + 1) 3) Hence, SUs with,, ,, value of O contribute 1 to the above

Ym.nV [s multiplication, whereas those with,, ,, value of 1 contribute
In addition, letr,.: degote the sensing time required 8,, g ohjective in (5) minimizes the total energy consumption
in order to achieve &, ,, value of 0.5. It can be calculated,ssociated with sensing for a frame. Constraint (6) specifie
from (3) as L 9 that if SU,, senses channet, the sensing duration should be
min _ Q- (P1{7,,77,) at leastr'". In this way, we guarantee that the concavity
e Ym.nV s ' cond|t|on always holds. Constraint (7) denotes that tomaét

spent by an SU for sensing should be less than or equal to
We assume that a channel should be sensed by avlédst the sensing duration of a frame. It also forcesrall,, values
SUs. 5™ defines the minimum number of cooperating SUgssociated witt§U,, to zero, ify,, = 0. Constraint (8) requires
for a channel. The selection 6" value is a design criterion. that each channel should be sensed by at l6&ét SUs.
In order to encourage cooperation and improve robustnesssigilarly, Constraint (9) limits the number of cooperatidgs
6™ value greater than one is preferred. On the other hangy a channel in order to satisfy the false alarm probability
regarding energy efficiency conced;”" should not be high threshold. Constraint (10) forces, value for an SU to 1, if
as each additional SU used for sensing incurs sensing enefgit SU senses any channels. The requirement for cooperativ
consumption, and maybe reporting energy. detection probability being greater than the thresholdefch
If we assume thaP/, ,, = P/ ¥m,n, thenQ/, is given by channel is expressed by Constraint (11). Finally, Constsai
(12) and (13) specify the types of variables.

I = f . . .
Qm =1- H (1= P). The above problem is a Mixed Integer Non-linear Pro-
n€Sm gramming problem because of Constraint (11), even though
SinceQ?, < ,,Q7, then the maximum number of cooperatindts objective is linear. We resort to the outer linearizatio
SUs, denoted by™**, can be calculated as algorithm to solve the above problem.
log (1 —,,Qf
gmaz _ \_ Og( thQ )J (4) - - -
log (1 — PY) C. Outer Linearization

In other wordsy™** is the maximum number of cooperating As proven before, once the,, ,, values are fixed? value
SUs that satisfy the cooperative false alarm constraineé T§ concave in terms of,,, ,,. Thus, Constraint (11) is convex,
solution methodology we apply can also be used for the cagd the outer linearization procedure can be used to find
whereP/, , values differ. We discuss this case in detail at thgye optimal solution [19]. Outer linearization works by firs
end of the fO”OWIng section. The optlmlzatlon model can b@normg the mixed |nteger non-linear constraints to abm
written as initial solution. If the solution satisfies all previouslgriored
constraints, then it is optimal. On the other hand, if it does
P1: min w = Z Z Pty + ZETe”yn (5) not, then the most violated constraint is linearized usimg t
m=1n=1 current solution, and added to the current problem as a new
subject to: constraint to obtain another solution. The linearizatioocess
in goes on until all constraints are satisfied with atolerance.
Tmn 2 T Tmon vm € M,Vn € N (6)  Since the constraints are convex, the procedure is guante
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to terminate in finite number of steps [20]. The steps of the
procedure are as follows: performance in terms of detection and false alarm probabili
« Step 1: Initialize the iteration countet,= 1. Solve the ties. However, in this approach, sensing duration of a frame
initial Mixed Integer Linear Programming problerR?) (denoted byI®) is constant. Hence, if we denote the frame
formed by ignoring Constraint (11), and obtain the initiafluration byZ" and reporting time of the sensing outcomes by
solution7,, .., &7, ., Yn- TP, which are also constant, then the transmission time for
o Step 2: Identlfy the most violated constraigt,, among data packets is given iy —17"° —7"°P. Another approach is to
theM constraints of (11) with the current solutiorf}(,,, maximize the data transmission duration of a frame. Thigfim

andyk). That is to sayg,, is the cooperative detec-we treatT* as a decision variable. Assuming a quiet sensing

mn' M

tion probability constraint corresponding to the Cha””%'enod T is given bymax{ Z Tm.n}. I other words T
that deviates from the threshold value most. Let
denote the corresponding deviation. is the maximum of total sensmg times for all SUs as the

« Step 3: If the maximum violation is smaller thanstop; Nnetwork should wait for the SU with the longest total sensing
the current solution is optimal withfeasibility tolerance. time before moving on the next phase of a frame Then, the

Otherwise, proceed with Step 4. objective becomesnax z; = T — T"* — max{ Z Tmn}-
o Step 4: Linearize the most violated constraint by addin

the following linear constraint t®2: gmceT andT"<P are constants, this objectlve is equwalent to

min zo = Inax{ Z Tm,n } SUbject to Constraints (6), (8), (9),
(10), (11), (12) and (13). To solve this problem, we resort t

Tmi = L the outer linearization procedure again as the constrairgs
Vgm(. --fffn,ia . --T:f@,ia )T : + v, <0 almost the same.
Tm,i — Tflfz.i
’ V. HEURISTICAPPROACHES
In this section, we propose two suboptimal but fast heuristi
whereVg,,(...a%, ,,...75 ,,...) is the gradient ofy,, approaches for the energy-efficient sensing problem. The fir

evaluated at the current solution. Its individual entriess a0ne focuses on greedily minimizing sensing energy while
disregarding the reporting energy. On the other hand, the

given by the Te} ] f
second heuristic initially considers the reporting enethgn
Ogm  _ 0 QN (PT) = \/Tm.ifsm.i p . itregards the sensing energy.
0Ty 29m.i + 1 et Unlike the previous two approaches that support different
o . NG detection probabilities for different channel and usemrsai
agm = m,iYmiVJs A i B these heuristics require a fixed detection probabilt§, for
Tm,é 2\/77” iV2my/29m,i + 1 all channels and users for the sake of simplicity and quick
where B,, ; is given by execution time. This approach is frequently applied in the

N literature [4, 12, 14]. For both heuristics, we sense each
I ll 9 (Q‘I(Pf) - W/Tm,nfs’ym,n)x )] channel withd™ SUs. Thus, the require? value can be

/2Vmn +1 calculated as

Setk = k+ 1, solve the current problem to obtai, ,,

@, v @ndyy; values. Proceed with Step 2. ~which guarantees a minimum detection probabilityRff;,,
In the remainder of this paper, we refer to the applications the P/, ,, values are assumed to be the same for all SU-
of outer linearization to Problem P1 as EE, which stands fehannel pairs as before, the goal of the heuristics is to find

n=1,n#1
P! =max{1 — (1 — Q""" p. 1,

min

energy efficiency. the best SU/channel assignment.
For the case wherg/, , values differ, false alarm constraint
assumes the following form A. Sensing Energy Minimization Heuristic (SEM)
N ; ; This heuristic minimizes the sensing energy by selecting
1= [] =Pl ama) — 0@ <0. SUs with high SNR values for a channel while disregarding
n=1 reporting energy. Initially, remaining sensing time of 8lUs

The outer linearization procedure can still be applied is thare equal t@™*. The heuristic starts with the first channel, sorts
case, but this tim&M constraints (cooperative false alarnthe SUs in descending order based on thgir,, values, and
probability constraint in addition to cooperative detenti selects the first SU in the list. Then, it calculates the nesgli
probability constraint for each channel) need to be checkegl ,, value for the selected SU to obtain a detection probability
for feasibility. The other steps of the procedure are theesanof P<. If the remaining sensing time of the selected SU is
greater tharm,, ,,, the selected SU is assigned to sense channel

D. Transmission Time Maximization (TXT) m. Otherwise, we move on to the next SU. The algorithm runs

The aforementioned model optimizes the total energy dedintil /™" SUs are assigned to all channels. The pseudo code
cated to the sensing task while achieving satisfactoryisgnsfor this heuristic is given in Algorithm 1.
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Algorithm 1 Sensing Energy Minimization Heuristic

Algorithm 2 Reporting Energy Minimization Heuristic

Require: P4, 5™ M, N, Vpn, T?
1: remainingTime[n] = T* vn
2: for m=1to M do

Require: P, §™" M, N, Vpn, T?
1: remainingTime[n] = T*° vn

2. STeP = (), S¥P = {SUY, SUs, ..., SUn'}

3:  Sort SUs in descending order 9f, ,, and letindex be  3: for m =1 to M do
the list of indices of the sorted entries such thatex[1] 4:  Sort SUs inS™? in descending order of,, , and let
corresponds to the index &fU with the highesty,, ,, index Rep be the list of indices of the sorted entries.
andindex[N] corresponds to the index &fU with the 5. assignmentNo=0, k=1
lowest v, 1. 6:  while (assignmentNo < §™™") && (k < |S™P|) do
4:  assignmentNo=0, k=1 7: n = indexReplk]
5:  while assignmentNo < 6™ do 8: SelectSU,, € S as a candidate and calculaig ,
6: n = index[k] value to achieveP? using (3).
7 SelectSU,, as a candidate and calculatg ,, value o if 7o < remainingTimeln] then
to achieveP? using (3). 10: remainingTimeln] = remainingTime[n] —
8: if Ton < remainingTime[n] then Tm.n
o: remainingTimeln] = remainingTimeln] — 11 assignmentNo = assignmentNo + 1
Tm.n 12: end if
10: assignmentNo = assignmentNo + 1 13: k=k+1
11 end if 14:  end while
12: k=k+1 15 if assignmentNo < 6™™ then
13:  end while 16: Sort SUs inS""“P in descending order of,, , and
14: end for let indexNrep be the list of indices of the sorted
entries.
17: k=1
18: while assignmentNo < 6™ do

Starting with the first channel, the heuristic selet§® SUs  19:
with the besty,, , values and enough remaining sensing timeo:
for the sensing task. The outer loop take&g\/) steps. Sorting
SUs based on theity, , values isO(N log N), whereas 21

n = indexNrepk]

SelectSU,, € 8""°P as a candidate and calculate
Tm.n Value to achieveP? using (3).

if T, < remainingTime[n] then

the inner loop isO(N). Hence, the total running time is 22: remainingTime[n] = remainingTimeln] —
O(MN logN). Tm.n
23: assignmentNo = assignmentNo+1, 8P =
B. Reporting Energy Minimization Heuristic (REM) S"PU{SU}, 8P = S"PN\{SU,}
The main difference between the Reporting Energy Mini%4: zn_d g+1
mization (REM) heuristic and SEM is that REM first considerszsj end ;vhile

SUs that are already assigned to sense a channeltethe

the set of SUs that are going to perform sensing and transrift end if
28: end for

their reports for this frame. Similarh§" <P is the set of SUs
that are not assigned to sense a channel yet. Initi&lly, = (),
§"rep = {SUy, SU,, ..., SUx}. The heuristic first looks for
SUs among the ones #"“? in order to save reporting energy.
If enough SUs are not found, then it moves onS&°?. As other methods. The values for the other parameters are given
in the previous case, SUs $'“? andS™"“? are processed in in Table I.
decreasing order of,, , values for the considered channel. By using (4), we obtain™**=10 for the givenP/ and
The pseudo code of REM is given in Algorithm 2. @/ values. The reader should note that the presented results
This time both inner while loops (line 6 and line 18) takere for a single frame. Hence, the cumulative effect will be
O(N), and the sorting operations are stV log N). As in  much higher if multiple frames are considered. Furthermore
the previous case, the total running time(i$M/ N'log N).  the processing order of the channels is important for thergiv
heuristics as they converge to local optimal solutions.rnEve
though the channels are ordered naturally in the given pseud
code, we also run both heuristics with randomly ordered
an exponential distribution with mean®~N%. In order to be channels 20 times. The results given below for the heusistic
consistent, we use the samsg, ,, values for a giverySN% are the best of the 21 runs in terms of energy consumption.
across different runs. For a given parameter set, we first runwWe first observe the total energy consumption and its
the TXT method to obtain the ideal sensing time denoted lydividual components in Figs. 2(a) and 2(b) fot'V 7 values
T, For the other methods, we scale this value withcan of -5 dB and 2 dB, respectively. For low*VE, the sensing
value @ > 1), and useaT,, as the sensing time for thecomponent of the energy consumption is more dominant. On

VI. RESULTS
We assume that received SNR at an SiJ, () follows
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TABLE |: Parameters values Toor

M 40 600 -
N {160, 180, 200, 220, 240
fs {1 kHz, 10 kHZ soor
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. 2 400
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Pf 0.01 £ o
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T* Ty, 2001
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P 1000 mwW 100p
E7er 1md Vn
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Q7 0.9 (@) Low SNR,uSNE = .5 dB,
tth 0.1 180
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the other hand, reporting energy consumption becomes the
major component whepSN? is higher. As we can see, the
reporting energy consumption is similar in both cases. ldenc
the difference stems from the sensing energy consumption. sof
With high 5N, the time required to achieve a particular
detection probability decreases, which in turn decrealses t
required sensing time. In both cases, TXT achieves the worst 0 Total Energy Sensing Energy Reporting Energy
performance since its objective does not consider the gnerg (b) High SNR, 2SN E = 2 dB.
consumption at all. On the other hand, the performance of EE
is always superior compared to other methods. Furthermorig. 2: Energy consumption profiles witN' = 200, ™" =
SEM is slightly superior compared to REM for low SNR 3,a=2
because it prioritizes the sensing energy. ContrariwidgeMR
achieves lower total energy for high SNR value since it first
considers the reporting energy component.

The effect of changing:®N on total sensing energyenergy consumption.
consumption can be seen in Fig. 3. Fig. 3(a) shows a broadeThe total energy consumption and its individual components
range whereas Fig. 3(b) shows the high SNR regime. Initiallfpr f, = 10 kHz case are presented in Fig. 5. In comparison
increasing*V# values have a significant impact on totato Fig. 2, increasingf, has a similar effect as increasing
energy consumption for all methods whereas beyond a cert@NR value. However, the effect of SNR is more prominent.
point the benefits are minimal. In this case, EE providé®r instance, with all other factors constant, increagifi§f
7% improvement over the next best method, namely SEfvbm -5 dB to 2 dB (almost a fivefold increase) results in
heuristic, wherpSV is -10 dB. Moreover, the improvementnearly 83% reduction in energy consumption for EE. On the
over other methods is much better whet"#* assumes higher other hand, increasing, tenfold from 1 kHz to 10 kHz gives
values which can be seen in Fig. 3(b). As an example, usifng% decrease for EE. These observations are in accordance
EE results in 22% reduction in total energy consumptionith (3). In addition, similar to the case in Fig 3(b), with a
compared to the next best method, REM this time, wh&N®  higher sampling rate, REM heuristic provides lower energy
is 0 dB. In addition, both figures support our previous clairfonsumption than SEM.
that SEM achieves better performance than REM for low SNR The energy consumption values for various valuea @ire
values, while the reverse is true for high SNR values. given in Figs. 6(a) and 6(b) for°N% values -5 dB and 2

Fig. 4 illustrates the change in total energy consumpti@B, respectively. Asy is not a parameter for TXT, it is not
with respect to the increase in the number of SUs. Apart froaffected by the change in. For low « values, the results
TXT method, all schemes yield better resultsMsncreases. for SEM and REM are not shown because both heuristics
The main reason for this performance improvement is tli@il to provide a feasible solution. For the low SNR regime,
diversity brought by the added SUs. That is to say, with mobmth EE and SEM produce lower energy consumption with
SUs, the probability of finding an SU with a high, ,, value increasingy but the decrease is marginal. Unlike SEM and EE,
increases for a given channel. On the other hand, TXT the results for REM first decrease and then start to increase.
method shows slight variations since its goal is not related The rationale behind this pattern can be explained as fallow

Energy (mJ)
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Fig. 4: Effect of number of SUs on total sensing energy
consumption withySNf = -5 dB, §™" = 3, a = 2.
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Fig. 5: Energy consumption profiles with' = 200, 5™ =
3,a=2, fs =10 kHz, u*NE = -5 dB.

since REM prefers SUs that are already assigned a channel
for sensing when selecting SUs for channgla long sensing
duration causes SUs with lowy, ,, to be assigned to channel
m. We observe that sensing energy component dominates in
low SNR regime, so this causes an increase in total energy
consumption for REM. On the contrary, for high SNR regime
REM produces lower energy consumption values as reporting
energy component is the dominating factor. Both figures show
that with only a small amount of additional sensing time agjre
energy savings are possible.

To sum up, all three energy minimization methods (EE,
SEM, and REM) provide significant energy savings compared
to a pure transmission time maximization technique. In all
cases, EE achieves the best energy values whereas the- perfor
mance of SEM and REM depend on the parameter values. On

"the one hand, a lowe>V 7 or a higha favors SEM. On the
other hand, a high®N% or a highf, supports REM. As both
heuristics have very low complexities, both can be executed
in a short amount of time, and one can select the method with
the better energy consumption.

VII. CONCLUSION

In this paper, we have formulated the energy-efficient coop-
erative sensing scheduling problem for a CRN and presented
various approaches for this problem. Each scheme enswges th
minimum detection probability constraint as a PU protattio
criteria and the maximum false alarm probability constram
CRN operability criteria in each channel. EE, SEM, and REM
aim to minimize energy expenditure for sensing while TXT
minimizes time spent for the sensing task in order to leave
more time for data transmission. We have investigated the
performance of our proposals with various parameters. Tb fin
the optimal solution we have employed the outer lineamzati
method. Numerical evaluations have shown that by sacrificin
very little data transmission time, significant amount oéigy
can be saved. Furthermore, reporting energy is an important
factor in the energy consumption, especially, when the SNR
or sampling frequency is high.

As future work, we plan to incorporate different fusion jle
e.g. AND, MAJORITY, etc. into our model. Moreover, we
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Fig. 6: Effect of sensing duratior7() under low and high SNR values witN' = 200, ™" = 3.

also would like to analyze the impact of channel switching
delay and energy consumption of channel switching on sgnsin

APPENDIXB
PROOF OFLEMMA 1

energy consumption. Another point to pursue is to treaefals By combining (1) and (2), we get

alarm probabilities as decision variables, and jointlyimjzte
them together with sensing times.

APPENDIXA
PROOF OFTHEOREM 1

The first derivative ofP;fl_’n with respect tor,, , is

P, ., YV s 4
ATmn 2TV 20/ 2Ymm + 1
where
2
1 Q_l(PrZ n) - Tm,ﬂfs’ym,n
Am n = €Xp | —3 ’
’ 2 \/2Vmon + 1

The first derivative is always positive, hencg , is an
increasing function of;, .

The second derivative of, ,, with respect tor,, ,, is given
by
dQPg%,n _ UYmnV fsAm,n

_ 1 + 'Ym.,n\/ﬁ
drin  AV27\/29mn + 1

|:_ \/7-3 T (2Ymn + 1)

(Q_I(Pnfhn) - Tm,nfs'ym,n)] .

The second derivative is negative if

-1 Ym.nV fs -1 :
- Q P’y‘));n —V Tm,nJsTVm,n <0-
Ton,n Tm-,n(2vm,n+1)( () nfotmn)

)

Reducing ther,, ,, term leads to

1 Ym,nV fs 1
Trmon (27 n 1) (Q ( m,n) Tm, f Ym, )

Thus,P;an is a concave function of,, ,, if the condition
in (2) is satisfied.

B 1 i Vm,n\/ﬁgil(Pr(riz,n)
vV Tmﬂl \V 2’7m,n + 1

The first term is always negative, whereas the second term
is negative if P, , > 0.5. Since it is reasonable to assume a
P value greater than 0.5, we can safely say tiat, is a
concave function of,, ,, most of the time.

< 0.

APPENDIXC
PROOF OFTHEOREM 2

Let 7, denote ther vector with n entries that consists
of 7,,.», values for channetn. Moreover, letf,,  and h, i
denote(1 — P;fhk), and fo,.1fm2- .. fmk respectively. The
proofis by induction on the number of elementsSiy denoted
by |Sim|.

e |S;m| = 2: Without loss of generality, assume SUs 1 and

2 are inS,,. We can rewriteQ?, as1 — P, 2.
The gradient ofh,, 5 is given by

ahm,Q _ |: ’Ym,l\/ﬁAm,l

072 _2./Tm71\/27T1/2’}/m71 + 1fm"2 ’
'Ym,Q\/ﬁAm,Q :|

a 2 /Tm 2V 2T \/2Ym 2 + 1fm"1
1 f 2
_l Q (Pmn) - Tmﬂl.fs'ym,n
2 V2¥mn + 1

Both terms are always negative, this, » is a decreasing
function of 7. Therefore,Q¢, is an increasing function
of 7o since % = —%. In addition, as shown
in Lemma 2, bothf,,; and f, . are non-negative,
decreasing, and convex functions so their multiplication,
hm,2, is also convex [21], which leads to the concavity
of Q¢

where

A

m,n — €XP
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Let us assume that the theorem holds [f8F,| = & and
show that it also holds fofS,,| = k + 1. This time Q¢,
can be written as

an =1~ hm,k+1 =1~ hm,kfm,k+1-
The gradient of,, 141 iS given by

8hm,lﬁ»l o ahmk
OTk+1

[7]

(8]

8fm,k+1 [9]

67-k+1

]

p) fm,k+1a hm,k
Tk+1
Let us focus on the first term. Sinc;aggm—"“ is negative
k+1
by induction, andf,, »+1 iS non-negative, then their
multiplication is negative. For the second ter,, x
is a non-negative function, anﬁfa”:li%” is negative by
Lemma 2. Thus, their multiplication is also negative.
Since both terms are negativk,, 11 iS a decreasing
function of 7y 1. [11]
We apply the same logic as in the previous step to prove
the convexity of i, py1. Both h,, ;. and f,, 41 are
decreasing convex functions (convexity bf, , comes
from induction), then their multiplicatiorh,, ;1, is also
convex. ThusQ¢? is a concave and increasing functior{lzl
Of Tk+1-

[10]

Proving both the base step and the induction step leads to the
conclusion that)? is an increasing concave function of »

if (2) is satisfied.

[13]
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