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Spectrum sharing  for higher spectrum usage efficiency 

● Wireless connectivity as a basic need
● Emerging services with high capacity requirements
● Static spectrum management 

○ isolate wireless systems by assigning them to 
different frequencies

○ long terms, wide regions (country-wide)
○ guarantee of interference-free communication
○ not adaptive to the dynamics of supply and demand,  

unnecessarily creating spectrum scarcity
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A success story: Wi-Fi
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M. Parvini et al., “A Comprehensive Survey of Spectrum Sharing Schemes from a Standardization and Implementation Perspective,” 2022 https://arxiv.org/pdf/2203.11125.pdf



Spectrum sharing challenges
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● Growing complexity

○ hardware, access technologies, configurations

● Heterogeneity of networks

○ unlike Wi-Fi, traditional cellular networks are not designed to operate in 

spectrum-sharing mode

○ power asymmetry or different levels of robustness to interference

○ no communication/coordination among networks 

● Metrics for assessing coexistence 

○ throughput-oriented fairness metric

○ for different traffic types (e.g., URLLC, eMBB)

● Flexibility bringing spectrum security problems

○ Unauthorized or misconfigured transmission in the spectrum
● Verónica Toro-Betancur, Suzan Bayhan, Piotr Gawlowicz, Mario Di Francesco, CTC-CEM: Low-Latency Cross-Technology Channel Establishment with Multiple Nodes, IEEE WoWMoM 2020
● Piotr Gawlowicz, Anatolij Zubow, Suzan Bayhan, Adam Wolisz, Punched Cards over the Air: CTC Between LTE-U/LAA and WiFi, IEEE WoWMoM 2020
● Piotr Gawlowicz, Anatolij Zubow, Suzan Bayhan, Demo: Cross-Technology Communication between LTE-U/LAA and WiFi, IEEE INFOCOM 2020
● Anatolij Zubow, Piotr Gawłowicz, Suzan Bayhan, Deep Learning for Cross-Technology Communication Design, arxiv, 2019

https://arxiv.org/search/cs?searchtype=author&query=Zubow%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Gaw%C5%82owicz%2C+P
https://arxiv.org/search/cs?searchtype=author&query=Bayhan%2C+S
https://arxiv.org/abs/1904.05401
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(How) can ML help? 
● When model-driven approaches 

● fall short of reflecting accurately the physical processes 
● have prohibitive run-time complexity: usually NP-hard problems

● ML
● can capture complex interactions between different layers, growing complexity of 

technologies (e.g., Wi-Fi, LTE, NB-IoT, 5G-NR), 
● patterns in spectrum usage, channel characteristics
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● Edge spectrum analytics
○ For timely exploitation of the spectrum 
○ Lower traffic load (saving from data transmission to the fusion/decision center), 

lower energy consumption
○ Less privacy/security risks 
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Literature on ML-based spectrum sharing and awareness
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● Step-1: Spectrum state identification  

● Step-2: Spectrum access and peaceful coexistence 

● Step-3: Spectrum anomaly detection

● IEEE Comsoc’s  Best Readings in Machine Learning in Communications: https://mlc.committees.comsoc.org/research-library
● IEEE Comsoc Cognitive Networks Technical Committee https://cn.committees.comsoc.org/

https://mlc.committees.comsoc.org/research-library/
https://cn.committees.comsoc.org/


Step-1: ML-based spectrum state identification
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● K.M. Thilina, K,W. Choi, N. Saquib, E. Hossain, Machine learning techniques for cooperative spectrum sensing in cognitive radio networks. IEEE JSAC 2013.
● S.Rajendran, W. Meert, D. Giustiniano, V. Lenders, S. Pollin, S.  Deep learning models for wireless signal classification with distributed low-cost spectrum sensors, IEEE TCCN 2018.
● N. Soltani, N., K. Sankhe, S. Ioannidis, D. Jaisinghani, K. Chowdhury, Spectrum awareness at the edge: Modulation classification using smartphones. IEEE DySPAN 2019
● J. Gao, X. Yi, C.Zhong, X. Chen, Z. Zhang, Deep learning for spectrum sensing. IEEE Wireless Communications Letters, 2019.
● Y.Zeng, V. Chandrasekaran, S. Banerjee, D. Giustiniano, A framework for analyzing spectrum characteristics in large spatio-temporal scales, ACM Mobicom 2019
● X. Liu, Q. Sun, W. Lu, C. Wu, and H. Ding, Big-Data-Based Intelligent Spectrum Sensing for Heterogeneous Spectrum Communications in 5G,  IEEE Wirel. Comms. 2020.
● K. Tekbıyık, Ö. Akbunar, A. R. Ekti, A. Görçin, G. K. Kurt and K. A. Qaraqe, Spectrum Sensing and Signal Identification With Deep Learning Based on Spectral Correlation Function, IEEE TVT 2021.

● Regulatory bodies and network operators need to 
understand spatio-temporal characteristics of the spectrum 
usage and improve efficiency accordingly
○ Real-time, non-real-time analysis of short-term or long-term trends

● Is the spectrum idle or occupied? When will the spectrum be 
idle/busy?

● Which other networks are there in the neighborhood? 

Spatial occupancy

Frequency

Ti
m

e



Step-1: Is the spectrum idle or occupied?: a classification problem

● Goal: Low false alarms, high detection accuracy, low cost in 
time/energy/bandwidth

● Traditionally: 
○ If measured energy level < Energy Detection threshold, then idle
○ If collaborative sensing, fusion of individual results, e.g., AND/OR/Majority

● ML:
○ Feature vector: measured energy level at each sensor
○ Classifier’s output: idle or busy
○ Training 

■ Unsupervised: K-means clustering and Gaussian mixture model (GMM)
■ Supervised learning, e.g., support vector machine (SVM) and K-nearest 

neighbor (KNN)
● Performance: training time, the classification delay, and the ROC curve, the 

effect of the number of the sensing devices
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Sensing node(s): 
Vector of energy 
levels at each 
sensing node

● X. Liu, Q. Sun, W. Lu, C. Wu, and H. Ding, Big-Data-Based Intelligent Spectrum Sensing for Heterogeneous Spectrum Communications in 5G,  IEEE Wirel. Comms. 2020.
● K.M. Thilina, K,W. Choi, N. Saquib, E. Hossain, Machine learning techniques for cooperative spectrum sensing in cognitive radio networks. IEEE JSAC 2013



Step-1: Spectrum state prediction with DNNs 
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DNN model training
(LSTM/autoencoder) 

Given past time-
frequency spectrum raw 
data for x time units (in 
the absence of 
anomalies)

Next y time units of the spectrum 
data

RMSE between the ground truth signal and LSTM 
model prediction values

Li, Zhijing, et al. Scaling Deep Learning Models for Spectrum Anomaly Detection. ACM MobiHoc 2019. Code: https://github.com/0x10cxR1/spectrum_anomaly_detection/

https://github.com/0x10cxR1/spectrum_anomaly_detection/


Step-1: Modulation classification (at the edge)
● Identifying modulation type can help to understand which 

technologies coexist/compete in this band, e.g., Wi-Fi, U-

LTE, 5G NR-U

● Classification problem (e.g., 24 modulation schemes)

● Goal: high accuracy, robustness to different SNR regimes, 

low complexity to be able to run at the edge
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Wi-Fi: BPSK, QPSK, 16QAM, 
64 QAM, 256 QAM 

LTE: QPSK, 16QAM, 
64QAM

5G: QPSK, 64QAM, 
256QAM

Soltani, N., Sankhe, K., Ioannidis, S., Jaisinghani, D., & Chowdhury, K. Spectrum awareness at the edge: Modulation classification using smartphones. IEEE DySPAN 2019
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technologies coexist/compete in this band, e.g., Wi-Fi, U-

LTE, 5G NR-U

● Classification problem (e.g., 24 modulation schemes)

● Goal: high accuracy, robustness to different SNR regimes, 

low complexity to be able to run at the edge

● Proposal by Soltani et al.: 
○ Step-1: identify SNR regime (low, moderate, high SNR regimes)

○ Step-2: run the corresponding CNN for identification

○ Training on GPU and compressing/running it on smartphones

14Soltani, N., Sankhe, K., Ioannidis, S., Jaisinghani, D., & Chowdhury, K. Spectrum awareness at the edge: Modulation classification using smartphones. IEEE DySPAN 2019
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Step-2: Spectrum access and peaceful coexistence  
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● Reinforcement learning based schemes: 
○ Expected reward of each action-state pair  
○ Spectrum access and accumulated reward

● Autoencoders to design cross-technology channels
○ Networks can communicate with each other directly via cross-technology-

channels
○ How to create a signal that can be decoded both at the intended in-technology 

receiver and cross-tech receiver? 

● Han, M., Khairy, S., Cai, L. X., Cheng, Y., & Zhang, R., Reinforcement learning for efficient and fair coexistence between LTE-LAA and Wi-Fi. IEEE TVT 2020
● Yu, Y., Wang, T., & Liew, S. C., Deep-reinforcement learning multiple access for heterogeneous wireless networks. IEEE JSAC, 2019
● Mosleh, S., Ma, Y., Rezac, J. D., & Coder, J. B. Dynamic spectrum access with reinforcement learning for unlicensed access in 5G and beyond. IEEE VTC2020-Spring
● Anatolij Zubow, Piotr Gawłowicz, Suzan Bayhan, Deep Learning for Cross-Technology Communication Design, arxiv, 2019
● https://mlc.committees.comsoc.org/tag/autoencoders/

https://arxiv.org/search/cs?searchtype=author&query=Zubow%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Gaw%C5%82owicz%2C+P
https://arxiv.org/search/cs?searchtype=author&query=Bayhan%2C+S
https://arxiv.org/abs/1904.05401
https://mlc.committees.comsoc.org/tag/autoencoders/


Step-3: Spectrum anomaly detection
● Advances in both reconfigurable hardware and spectrum usage policies make 

it easy to misuse spectrum without authorization
○ Transmissions at unexpected power levels,  out of band transmission, misconfigured devices, 

unexpected patterns
○ Authorized transmitters or misuse of the spectrum? Where are the transmitters?
○ Fair coexistence or not?  

● Manual diagnosis following customer complaints and operational failure logs

● ML-based
○ Anomaly detection (supervised and unsupervised approaches)

○ Transmitter localization
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● Li, Zhijing, et al. Scaling Deep Learning Models for Spectrum Anomaly Detection. ACM MobiHoc 2019. Code: https://github.com/0x10cxR1/spectrum_anomaly_detection/
● S. Rajendran, W. Meert, V. Lenders, S. Pollin, SAIFE: Unsupervised Wireless Spectrum Anomaly Detection with Interpretable Features, IEEE DySPAN  2018 & TCCN 2019
● S. Rajendran, V. Lenders, W. Meert and S. Pollin,  Crowdsourced Wireless Spectrum Anomaly Detection, IEEE TCCN, 2020

● https://socrates.networks.imdea.org

https://github.com/0x10cxR1/spectrum_anomaly_detection/
https://socrates.networks.imdea.org


Supervised Approach: Detection 
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Trained 
model

Past spectrum
observations

Predicted 
spectrum

Current spectrum 
observations

-
error Yes

> T anomaly

normal

If  divergence from the prediction 
above some threshold T: Anomaly

Li, Zhijing, et al. Scaling Deep Learning Models for Spectrum Anomaly Detection. ACM MobiHoc 2019. Code: https://github.com/0x10cxR1/spectrum_anomaly_detection/

https://github.com/0x10cxR1/spectrum_anomaly_detection/


Supervised Approach: Detection 
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Trained 
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Predicted 
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Current spectrum 
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-
error Yes

> T anomaly

normal

If  divergence from the prediction 
above some threshold T: Anomaly

Challenge: Location of the sensor, mobility profile, time are relevant. But,  training at each location, at each 
cell and band: not scalable!
Approach: Context-agnostic models for spectrum usage and applying transfer learning to minimize 
training time and dataset constraints

Li, Zhijing, et al. Scaling Deep Learning Models for Spectrum Anomaly Detection. ACM MobiHoc 2019. Code: https://github.com/0x10cxR1/spectrum_anomaly_detection/

https://github.com/0x10cxR1/spectrum_anomaly_detection/


Supervised Approach: Detection 
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> T anomaly
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If  divergence from the prediction 
above some threshold T: Anomaly

Does removing context-awareness decrease the accuracy of DNNs (false alarms and correct 
detection)? → Yes, but Transfer Learning can help to some extent. 

Li, Zhijing, et al. Scaling Deep Learning Models for Spectrum Anomaly Detection. ACM MobiHoc 2019. Code: https://github.com/0x10cxR1/spectrum_anomaly_detection/

https://github.com/0x10cxR1/spectrum_anomaly_detection/


Step-3: Multiple transmitter localization  
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Spectrum 
Monitoring Entity

(x1 y1)?

(x3, y3)?

(x2, y2)?

● A. Zubow, S. Bayhan,  P. Gawłowicz, F. Dressler,  Deeptxfinder: Multiple transmitter localization by deep learning in crowdsourced spectrum sensing. IEEE ICCCN, 2020
● C. Zhan, M. Ghaderibaneh, P. Sahu and H. Gupta, DeepMTL: Deep Learning Based Multiple Transmitter Localization,  IEEE WoWMoM 2021  
● Zhan, H. Gupta, A. Bhattacharya, M. Ghaderibaneh, Efficient localization of multiple intruders for shared spectrum system,  IPSN 2020.
● Debashri, et al. Detection of Rogue RF Transmitters using Generative Adversarial Nets, IEEE WCNC 2019.

● Goal: Identify the locations (x, y) of 
transmitters with high location 
accuracy and low false alarm rate 
for avoiding waste of expert time

● Challenge: Multiple transmitters, 
multiple transmission power 
levels, channel variations! The 
sensors receive a sum of the 
signals.  

● CNNs for transmitter localization



DeepTxFinder:  Two-step CNN approach

● Step-1: CNN detects the number of transmitters
● Step-2: CNN estimates actual 2D locations of that

many transmitters 

21*A.Zubow, S. Bayhan, P. Gawłowicz, F. Dressler, Deeptxfinder: Multiple transmitter localization by deep learning in crowdsourced spectrum sensing. IEEE ICCCN, 2020 (invited paper)



Some open questions/challenges

● Scalability (training overhead): 
○ MIMO, directional transmissions at higher frequencies, more dynamic spectrum usage
○ Difficulty of anomaly detection in a dynamic environment

● Overheads:
○ Energy efficiency (training cost)
○ Spectrum usage overhead for centralized models

● Interpretability of ML-based sharing solutions
○ acceptance by the operators

● Availability of real-world data and access to this data
○ Challenge for researchers

22* Tommy van der Vorst et al, Managing AI use in telecom infrastructures Advice to the supervisory body on establishing risk-based AI supervision, 2019



Key takeaways
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● Spectrum needs to be shared dynamically, regulatory bodies in favour of sharing

● Model based approaches: 
○ may not capture accurately the essence of the  physical processes due to complex interactions among 

protocol layers, complexity of the hardware, increasing diversity of access technologies, configurations
○ too complex (NP-hard problems) requiring accurate knowledge on, e.g., CSI, leading to high 

signalling/coordination overhead

● Many ML-based proposals, but: 
○ Training challenge, scalability
○ Needs more analysis on energy efficiency and overhead leading to more spectrum usage
○ Interpretability 
○ Data availability:  spectrum statistics, transmitter location
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