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Sharing is caring ....

More environment-friendly, cost-effective, ...
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Sharing is caring ....

And also needed for higher spectrum utilization efficiency!



Sharing is needed for meeting the wireless demand

Mobile data traffic per device per month
Unit: GB/month
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And also needed for higher spectrum utilization efficiency!


https://www.ericsson.com/en/reports-and-papers/mobility-report/mobility-visualizer

Today's approach: static spectrum management
nearly a century old!
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o isolate wireless systems by assigning them to different frequencies

o long terms, wide regions (country-wide)

o guarantee of interference-free communication

o not adaptive to the dynamics of supply and demand, unnecessarily creating
spectrum scarcity

https://www.darpa.mil/program/spectrum-collaboration-challenge
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A success story: Wi-Fi SRR /[ DACS.
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Spectrum sharing works for Wi-Fi!
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If it works for Wi-Fi, what is the challenge in sharing
spectrum?
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If it works for Wi-Fi, what is the challenge in sharing
spectrum?

e growing complexity in hardware, access technologies, configurations

e unlike Wi-Fi, traditional cellular networks are not designed to operate in spectrum-
sharing mode

e heterogeneity of networks (e.g., power asymmetry, no communication*/coordination
among networks)

e fair/peaceful coexistence for different traffic types (e.g., URLLC, eMBB)

Verdnica Toro-Betancur, Suzan Bayhan, Piotr Gawlowicz, Mario Di Francesco, CTC-CEM: Low-Latency Cross-Technology Channel Establishment with Multiple Nodes, IEEE WoWMoM 2020

Piotr Gawlowicz, Anatolij Zubow, Suzan Bayhan, Adam Wolisz, Punched Cards over the Air: CTC Between LTE-U/LAA and WiFi, IEEE WoWMoM 2020

Piotr Gawlowicz, Anatolij Zubow, Suzan Bayhan, Demo: Cross-Technology Communication between LTE-U/LAA and WiFi, IEEE INFOCOM 2020 1 O
Anatolij Zubow, Piotr Gawtowicz, Suzan Bayhan, Deep Learning for Cross-Technology Communication Design, arxiv, 2019


https://arxiv.org/search/cs?searchtype=author&query=Zubow%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Gaw%C5%82owicz%2C+P
https://arxiv.org/search/cs?searchtype=author&query=Bayhan%2C+S
https://arxiv.org/abs/1904.05401
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Challenges

Spectrum opportunity Spectrum access &
discovery mobility

Accurately identifying the state of the spectrum by spectrum sensing:
how, when, where to perform sensing and decide on the spectrum
state

Selecting the best transmission parameters for peaceful and fair
coexistence, e.g., proactive approaches predicting the channel conditions

|dentifying the spectrum misuse for regulatory enforcement y
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(How) can ML help?

12
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(How) can ML help?

When model-driven approaches
- fall short of reflecting accurately the physical processes
- have prohibitive run-time complexity: usually NP-hard problems

ML: can capture complex interactions between different layers, growing complexity of
technologies (e.g., Wi-Fi, LTE, NB-loT, 5G-NR), patterns in spectrum usage, channel

characteristics
13
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(How) can ML help?

e RL for trial and error: spectrum access and accumulated reward
e CNNs for image analysis: spectrum measurement in 2D is considered as an image
e RNNSs for time-series forecasting problems: spectrum occupancy as sequential data

e |[EEE Comsoc’s Best Readings in Machine Learning in Communications: https://mlc.committees.comsoc.org/research-library
° IEEE Comsoc Cognitive Networks Technical Commitiee https://cn.committees.comsoc.org/ 14
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ML approaches in the spectrum sharing context

e Example-1: Spectrum awareness
e Example-2: Multiple transmitter localization

e Example-3: Modulation classification at the edge

15



Regulatory bodies and network operators o Tt . DACS
need spectrum awareness

e to understand its utilization level and usage patterns, and improve efficiency

accordingly

o  Spatio-temporal characteristics of the spectrum usage (short and long-term)

e for misuse identification and spectrum enforcement
o  Who uses the spectrum? Authorized transmitters or misuse of the spectrum?
m Advances in both reconfigurable hardware and spectrum usage policies make it easy to misuse
spectrum without authorization

m Transmissions at unexpected power levels, misconfigured devices

~n  Fair rnavictance nr nnt?

Real-time analysis Near-real-time Non-real-time big
. Long-term trends . P :
and prediction identification data analysis



®
UNIVERSITY @

Communication Systems

DNNs for spectrum anomaly detection

e Manual diagnosis following customer
complaints and operational failure logs

Scaling Deep Learning Models for Spectrum Anomaly Detection

Zhijing Li*, Zhujun Xiao, Bolun Wang®, Ben Y. Zhao and Haitao Zheng
University of Chicago, *University of California, Santa Barbara

ABSTRACT

Spectrum management in cellular networks is a challenging task
that will only increase in difficulty as complexity grows in hard-
ware, configurations, and new access technology (e.g. LTE for IoT
devices). Wireless providers need robust and flexible tools to mon-
itor and detect faults and misbehavior in physical spectrum usage,
and to deploy them at scale. In this paper, we explore the design
of such a system by building deep neural network (DNN) models
to capture spectrum usage patterns and use them as baselines to
detect spectrum usage anomalies resulting from faults and misuse.
Using detailed LTE spectrum measurements, we show that the key
challenge facing this design is model scalability, i.e. how to train
and deploy DNN models at a large number of static and mobile ob-
servers located throughout the network. We address this challenge
by building context-agnostic models for spectrum usage and apply-
ing transfer learning to minimize training time and dataset con-
straints. The end result is a practical DNN model that can be easily
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Figure 1: Spectrum anomaly detection by multiple observers.

leakage from cable plants and connectors. For example, interfer-
ence from a misconfigured amplifier led to persistent quality-of-
service issues for a tier 1 service provider [39].

These problems will grow in severity and scale in the near fu-
ture. Advances in both reconfigurable hardware and spectrum us-
age policies make it easy to misuse spectrum without authoriza-
tion. There is already evidence of these misuse attacks in China,

Li, Zhijing, et al. Scaling Deep Learning Models for Spectrum Anomaly Detection. ACM MobiHoc 2019. Code:

https://github.com/0x10cxR1/spectrum_anomaly_detection/ Figures on the following slides are from the paper. 17



https://github.com/0x10cxR1/spectrum_anomaly_detection/

DNNs for spectrum anomaly detection

e Manual diagnosis following customer
complaints and operational failure logs

e Proposal: Use sensors scattered in the
network and use the identified patterns via
DNNs as baselines to detect spectrum usage
anomalies resulting from faults and misuse:
on-the-spot identification of an anomaly

e Challenge: Location of the sensor, mobility
profile, time are relevant. But, training at each
location, at each LTE cell and band: not scalable!
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Scaling Deep Learning Models for Spectrum Anomaly Detection

Zhijing Li*, Zhujun Xiao, Bolun Wang®, Ben Y. Zhao and Haitao Zheng
University of Chicago, *University of California, Santa Barbara

ABSTRACT

Spectrum management in cellular networks is a challenging task

that will only increase in difficulty as complexity grows in hard-

ware, configurations, and new access technology (e.g. LTE for IoT

devices). Wireless providers need robust and flexible tools to mon-

itor and detect faults and misbehavior in physical spectrum usage,
and to deploy them at scale In this paper we explore the des:gn

I network (DNN) models'
use them as baselines to

ents, we show that the key
-alability, i.e. how to train

Edge!

‘We address this challenge

straints. The end result is a practical DNN model that can be easily

Li, Zhijing, et al. Scaling Deep Learning Models for Spectrum Anomaly Detection. ACM MobiHoc 2019. Code:

https://github.com/0x10cxR1/spectrum_anomaly_detection/ Figures on the following slides are from the paper

ng from faults and misuse.

er of static and mobile ob-

ing context-agnostic models for spectrum usage and apply-
ing transfer learning to minimize training time and dataset con-
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Figure 1: Spectrum anomaly detection by multiple observers.

leakage from cable plants and connectors. For example, interfer-
ence from a misconfigured amplifier led to persistent quality-of-
service issues for a tier 1 service provider [39].

These problems will grow in severity and scale in the near fu-
ture. Advances in both reconfigurable hardware and spectrum us-
age policies make it easy to misuse spectrum without authoriza-
tion. There is already evidence of these misuse attacks in China,

18
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DNNs for spectrum anomaly detection

e Manual diagnosis following customer
complaints and operational failure logs

e Proposal: Use sensors scattered in the
network and use the identified patterns via
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Scaling Deep Learning Models for Spectrum Anomaly Detection

Zhijing Li*, Zhujun Xiao, Bolun Wang®, Ben Y. Zhao and Haitao Zheng
University of Chicago, *University of California, Santa Barbara

ABSTRACT

Spectrum management in cellular networks is a challenging task

that will only increase in difficulty as complexity grows in hard-

ware, configurations, and new access technology (e.g. LTE for IoT

devices). Wireless providers need robust and flexible tools to mon-

itor and detect faults and misbehavior in physical spectrum usage,
and to deploy them at scale. In this paper, we explore the design

DNNSs as baselines to detect spectrum usage
anomalies resulting from faults and misuse:
on-the-spot identification of an anomaly

e Challenge: Location of the sensor, mobility
profile, time are relevant. But, training at each
location, at each LTE cell and band: not scalable!
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Figure 1: Spectrum anomaly detection by multiple observers.

leakage from cable plants and connectors. For example, interfer-
ence from a misconfigured amplifier led to persistent quality-of-
service issues for a tier 1 service provider [39].

These problems will grow in severity and scale in the near fu-
ture. Advances in both reconfigurable hardware and spectrum us-
age policies make it easy to misuse spectrum without authoriza-
tion. There is already evidence of these misuse attacks in China,

Solution: Context-agnostic models for spectrum usage and applying transfer learning to minimize

training time and dataset constraints

vy
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Approach: Training ST . fDACS

Given past time-
frequency spectrum raw

: . DNN model training Next y time units of the spectrum
data for x time units (in ~———»
(LSTM/autoencoder) data
the absence of
anomalies)

RMSE between the ground truth signal and LSTM
Mixture of static and mobile users’ data model prediction values
(in the same cell)

20
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Past spectrum Trained Predicted
observations model spectrum
error Yes
[ anomaly ]

Current spectrum

observations ° normal ]

If divergence from the prediction
above some threshold T: Anomaly

Does removing context-awareness decrease the accuracy of DNNs (false alarms and
correct detection)? o1



Scalable DNN: context-agnostic and transfer learning

Data: 3 LTE MNOs in U.S January-March and June 2018

USRP N210 devices, sensing on 5 MHz bandwidth of each LTE band

Static, walking, driving

Large university campus and downtown

Day and night

Controlled misuse scenario: unauthorized transmitters and observers within 50m of the misuser
LSTM and deep autoencoder as DNN models

Accuracy of models trained on data collected by a static observer when used by another
static observer at a different location and another mobile observer in the same cell

Accuracy of using Cell-A’s model in Cell-B (with and without transfer learning)

Accuracy of using band-1's model in band-2
22



Key take-away:

e For scalable, accurate identification of spectrum anomalies at the edge, context-
agnostic DNNs (LSTM and deep autoencoders) with transfer learning can help.

3 key findings:

Within a single LTE cell Across LTE cells Across different frequency bands
9 07 f; f
(9)
() o
A unified model for an LTE cell Transfer learning needed for other Transfer learning needed for
cells other spectrum bands

Comparison with other approaches (frequency, UL/DL) but more
(e.g., rule-based, Kalman Filter), Small training data at the target changes in the transfer phase
DNN outperforms! cell: training data reduction by 288x

compared to training from scratch DL to UL transfer is challenging



Key take-away:

e For scalable, accurate identification of spectrum anomalies at the edge, context-
agnostic DNNs (LSTM and deep autoencoders) with transfer learning can help.

3 key findings:

Within a single LTE cell Across LTE cells Across different frequency bands

) <<“r”>>oo7

f f,

Please see the deta”S |n the paper Li, Zhijing, et al. Scaling Deep Learning Models for Spectrum Anomaly

Detection. ACM MobiHoc 2019. Code: hitps://aithub.com/0x10cxR1/spectrum_anomaly_detection/
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ML approaches in the spectrum sharing context

e Spectrum awareness
e Multiple transmitter localization

e Modulation classification at the edge

25



Problem: Multiple transmitter localization (MTL)

Spectrum e Goal: Identify the locations (x, y)
Monitoring Entity of transmitters

O \O e Regulatory body: Legitimate or

illegitimate transmitter, security

(%2, ¥2)? threats on shared spectrum bands
(«‘I’))) ((((I)))) © (selfish transmitters, jammers
(%1 ¥1)? O etC-)
® ((((X)))) e Mobile network operator: Any

misuser or better strategizing for

(X3, y3)7 .
spectrum sharing

26



Problem: Multiple transmitter localization (MTL)

Spectrum e Goal: Identify the locations (x, y)
Monitoring Entity of transmitters

\ \() ° . Legitimate or

illegitimate transmitter, security
threats on shared spectrum bands
(((‘I’))) ((I))) © (selfish transmitters, jammers

etc.)

o (@ © Any

Challenge: Multiple transmitters, multiple transmission power levels, channel

variations! The sensors receive a sum of the signals.
27



DeepTxFinder*: CNNs for MTL jnisR - /DACS.

e Unknown number of transmitters

. Leg|t|mate Misuser localization fPOllCY .
e Two transmitters closely located can be :Transmltter 4—1 enforcement
identified =
e Scalability via tile-based operation | \ Sensor ‘ Sensmg Anomaly
. - ’ selection | [scheduling | |detection
e Goal: low false alarm rate for avoiding wasteof = \‘——o ——— ———J

expert time

spectrum sensing data
e.g., (x1,y1, RSSy1)

8

(x2,¥2)

(x3,Y3)

(x1,y1) Sensors

*Zubow, A., Bayhan, S., Gawtowicz, P., & Dressler, F. Deeptxfinder: Multiple transmitter localization by deep learning in

crowdsourced spectrum sensing. IEEE ICCCN, 2020 (invited paper) 28



- OF TWENTE.
Two-step CNN approach SR /DACS.

/\

e Step-1: CNN detects the number of transmitters
e Step-2: CNN estimates actual 2D locations of that

many transmitters
Sensing loc i
data > CN N1 [— )/;
~» | predict position of A
{ single transmitter [ y
Sensing : — /
data predict no. of |~ choose .
\ {
loc 0 —
‘ CNNJy X1
\ Y1
Sparse 2D matrix | predict position of : R
with sensing data T N transmitters g Xy :
(measured RSS & o — A Sensing
NaN) \ Y, yn

matrix

——

Predicted transmitter
locations

29



Scalability is a challenge: tiling-based approach ot - “/DACS,

/\

Area of interest is divided into smaller uniform tiles,
Run prediction on each tile

Fuse the individual predictions from multiple tiles using majority voting to
derive the final set of predicted locations

@ Full sensing @Run prediction on
data each tile

@ Data fusion
(clustering)

@ » TX locations

@ Output

50 100 150 200 250 300 350

30



Performance assessment OFTWENTE o4 DACS

e Model training
o On artificial data generated by the simulator, simple pathloss model

e Metrics:
o Localization error, cardinality error, detection probability, false alarm, execution time
e Baseline: SPLOT*
o Breaks down multiple-transmitter-localization to several single-transmitter localization
problems
o Three variants with different threshold value r used for finding the local maximas
e Scenarios:
o S1 =no shadowing & known Ptx,
o S2 =shadowing & known Ptx
o S3 =shadowing & unknown Ptx

e Impact of sensor density
e Impact of field size on execution time

* M. Khaledi, et al., Simultaneous power-based localization of transmitters for crowdsourced spectrum monitoring, ACM MobiCom 2017 [SPLOT] 31



Localization error

Key take-away

e Even under sparse sensor deployment, transmitter locations can be identified
e DeepTxFinder identifies all transmitters, but with lower location inaccuracy!

17.5 + DeepTxFinder 104 + DeepTxFinder
-@- SPLOT (r=1m) : 0.01 -@- spPLOT (r=1m)
15.0 - SPLOT (r=2m) > - SPLOT (r=2m)
~— SPLOT (r=10m) = 081 - ~#— SPLOT (r=10m)
12.5 o S -1.01
© =
2 9]
10.0 £ 0.6 2-2.01
©
7.5 5 c
5041 D -3.04
5.0 2 : S
8 + DeepTxFinder
,s 0.2 @ SPLOT (r=1m) -4.01
4 SPLOT (r=2m)
0.0 -k~ SPLOT (r=10m)
. — Wl s . . .
T T T T T SR S S R SR T T, TR T S SR S K W SRS A X D D5 PO DR P P
¥ S P B o T D T XL P A P O T TP TP e F O
Sensor density (percentage) Sensor density (percentage) Sensor density (percentage)
(a) Localization error. (b) Detection probability. (c) Cardinality error.

Figure 5. Scenario I: Performance comparison of SPLOT and DeepTxFinder under no shadowing and constant TX power.
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Localization error

Key take-away

e Even under sparse sensor deployment, transmitter locations can be identified
e DeepTxFinder identifies all transmitters, but with lower location inaccuracy!

17.54 + DeepTxFinder 1.04 \ —’— DeepTxFinder
-@- SPLOT (r=1m) 0.01 _@- sPLOT (r=1m)
15.04 - SPLOT (r=2m) > - SPLOT (r=2m)
~&— SPLOT (r=10m) = 0.8 o ~#- SPLOT (r=10m)
12.5 o~ S -1.01
© ey
-8 []
10.0 ’5_0.6 .‘;‘_2'04
©
7.5 5 <
S04 T -3.01
5.0 3 _® S
8 —’— DeepTxFinder ./
- 0.2 @ SPLOT (r=1m) -4.01
—— = - SPLOT (r=2m) —— —
0.0 ~#— SPLOT (r=10m)
: 0.0 " . v . . : ; v : v -5.0 . v . ; ' v v .
AT T S S S S - R N T A X D DS O © O R D L o> A X D RS O ® DR RN P P
PSRN NIPNCEIN SOPN SN PN R A ISR NAPNEINCIEPN SIPN SEPVCPA P G A NPNARNUEPNEPNCEN SIPN NP PSR

Please see the details in the paper: zuow,a, Bayhan, s, cawtowicz, p., & dresster, F.

Deeptxfinder: Multiple transmitter localization by deep learning in crowdsourced spectrum sensing. IEEE ICCCN, 2020
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Localization error

Key take-away

e Even under sparse sensor deployment, transmitter locations can be identified
e DeepTxFinder identifies all transmitters, but with lower location inaccuracy!

17.54 + DeepTxFinder

—’— DeepTxFinder

-@- SPLOT (r=1m) 1.01 0.01 -@- spLOT (r=1m)
15.0 - SPLOT (r=2m) > -l SPLOT (r=2m)
~%— SPLOT (r=10m) = 0.8 o ~#— SPLOT (r=10m)
12.5 o S 109
© ey
'8 (9]
10.0 £ 0.6 E-z.m
©
7.51 _5 =
S o4 T -3.01
5.0 % b 8 -
DeepTxFinder
2,54 Qo2 & -@- SPLOT (r=1m) -4.01 =
— —B—— — - SPLOT (r=2m) —P— —
0.0 - SPLOT( =10m)
0.0 : -5.0

Q‘b? '\,b"’p\”‘yq”}}’"b-qbq’bqpq’ﬁ\‘pbg"

Also, p1ease°check DeepMTL whlch Beats beepTxFlnder significantly!”

'\,’D’ @b"@qo‘b&\ N

DeepMTL: C. Zhan, M. Ghaderibaneh, P. Sahu and H. Gupta, DeepMTL: Deep Learning Based Multiple Transmitter Localization, IEEE WoWMoM
2021
https://qithub.com/caitaozhan/deeplearning-localization
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(How) can edge Al help?
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(How) can edge Al help?

(mobile device interested in transmitting in the uplink or a small base station with
limited computation capacity than the core network)

(«p)

36
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(How) can edge Al help?

e Need for edge spectrum analytics
o For timely exploitation of the spectrum, otherwise, spectrum opportunities
might get lost
o Lower traffic load (saving from data transmission to the fusion center),
lower energy consumption

o Less privacy/security risks
37
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(How) can edge Al help?

e FPGA based implementations, e.g., [Restuccia and Melodia, INFOCOM 19]
e Federated learning, e.g., [Chakraborty et al., COMSNETS 20]
e Compressed ML models, e.g., [Soltani et al., DySpan19]

e F. Restuccia & T. Melodia, Big data goes small: Real-time spectrum-driven embedded wireless networking through DL in the RF loop, IEEE INFOCOM 2019
e S. Chakraborty, M. Hesham, D. Saha. Learning from Peers at the Wireless Edge. IEEE COMSNETS, 2020.
e N. Soltani, N., K. Sankhe, S. loannidis, D. Jaisinghani, K. Chowdhury, Spectrum awareness at the edge: Modulation classification using smartphones. IEEE DySPAN 2019
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(How) can edge Al help?

e FPGA based implementations, e.g., [Restuccia and Melodia, INFOCOM 19]
e Federated learning, e.g., [Chakraborty et al., COMSNETS 20]
e Compressed ML models, e.g., [Soltani et al., DySpan19]

e F. Restuccia & T. Melodia, Big data goes small: Real-time spectrum-driven embedded wireless networking through DL in the RF loop, IEEE INFOCOM 2019
e S. Chakraborty, M. Hesham, D. Saha. Learning from Peers at the Wireless Edge. IEEE COMSNETS, 2020.
e N. Soltani, N., K. Sankhe, S. loannidis, D. Jaisinghani, K. Chowdhury, Spectrum awareness at the edge: Modulation classification using smartphones. IEEE DySPAN 2019



Modulation classification at the edge

e Identifying modulation type can help to understand which

technologies coexist/compete in this band, e.g., Wi-Fi, U- Wi-Fi: BPSK, QPSK,
16QAM, 64 QAM,
LTE, 5G NR-U 256 QAM
e Classification problem: 24 modulation schemes
e Existing schemes: low accuracy in low SNR regime and I{ES:A?\LD%}XQAM
not designed to work at the edge '
e Proposal: 5G: QPSK, 64QAM,
o different CNN models for low, moderate, high SNR regimes 256QAM
o Training on GPU and compressing/running it on smartphones
o Step-1: identify SNR regime
o  Step-2: run the corresponding CNN

Soltani, N., Sankhe, K., loannidis, S., Jaisinghani, D., & Chowdhury, K. Spectrum awareness at the edge: Modulation classification using smartphones. IEEE
DySPAN 2019 40



Modulation classification at the edge

Training set /Q samples ensorflow
@ Lite I/Q samples
converter @
1nnni
[ B S iU=
. - e . :> g |:>Prediction
e GPU model Phone model
.hdf5 format lite format
large size small size
Training on the GPU Compress the model Classification at the
<1/Q, SNR, Modulation> for edge device edge

Soltani, N., Sankhe, K., loannidis, S., Jaisinghani, D., & Chowdhury, K. Spectrum awareness at the edge: Modulation classification using
smartphones. IEEE DySPAN 2019 41



Modulation classification at the edge

Tested on three smartphones

Classification accuracy:
e No noticeable performance
difference between GPU and
smartphone

I/Q samples
@ Classification time:
e Significant boost in classification

1nnni
- ®
- @] S ) @ . .

::> it .: » D time i the smartphones for
- ® ® I:I|> E\,> single 1/Q sequence!

L e GPU underutilized

GPU model Ph.one model
.hdf5 format -lite format _
large size small size Memory usage: ‘ ‘
® 15 memory with TensorFlow Lite
. Classification at the
Training on the GPU Compress the model e
NVIDIA Tesla V100 with 640 Tensor Cores and for edge device (i) MSM8917 Quad-core 1.4 GHz (i) 1.2 GHz (ii)
O iEEALOIE Quad-core Cortex-A7, MT6753 8-core 1.7 GHz

Soltani, N., Sankhe, K., loannidis, S., Jaisinghani, D., & Chowdhury, K. Spectrum awareness at the edge: Modulation classification using

smartphones. IEEE DySPAN 2019 42



Some open questions/challenges OFTWEnTE. - DACS

e Scalability (training overhead): MIMO, directional transmissions, more
dynamic spectrum usage

e Higher frequencies require directional transmission: an opportunity for
sharing in the spatial/angular domain, but might increase complexity of
sensing and beamforming for spectrum awareness

e Energy efficiency, overhead in spectrum usage for centralized models

e Interpretability of ML-based sharing solutions: acceptance by the operators

e Access to data, availability of real-world data

* Tommy van der Vorst et al, Managing Al use in telecom infrastructures Advice to the supervisory body on establishing risk-based Al supervision, 2019



Key takeaways N/ DACS

Spectrum needs to be shared dynamically, regulatory bodies in favour of sharing
Model based approaches:

O may not capture accurately the essence of the physical processes due to complex interactions among
protocol layers, complexity of the hardware, increasing diversity of access technologies, configurations

O  too complex (NP-hard problems) requiring accurate knowledge on, e.g., CSl, leading to high
signalling/coordination overhead

e Many ML--based proposals, but:

Training challenge, scalability

Data availability: spectrum statistics, transmitter locations

Needs more analysis on energy efficiency and overhead leading to more spectrum usage
Interpretability

o Hybrid solutions* combining ML and model-based solutions can also be
promising!

O
O
O
O

* Ghauch, H., Shokri-Ghadikolaei, H., Fodor, G., Fischione, C., & Skoglund, M. (2020). ML for Spectrum Sharing in Millimeter-Wave Cellular
Networks. Machine Learning for Future Wireless Communications, 45-62. 44
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