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Sharing is needed for meeting the wireless demand

More environment-friendly, cost-effective, … 
And also needed for higher spectrum utilization efficiency! 
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Source: https://www.ericsson.com/en/reports-and-
papers/mobility-report/mobility-visualizer

https://www.ericsson.com/en/reports-and-papers/mobility-report/mobility-visualizer


Today’s approach: static spectrum management 
nearly a century old!

● Licensed bands:
○ isolate wireless systems by assigning them to different frequencies
○ long terms, wide regions (country-wide)
○ guarantee of interference-free communication
○ not adaptive to the dynamics of supply and demand,  unnecessarily creating

spectrum scarcity

7
https://www.darpa.mil/program/spectrum-collaboration-challenge
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A success story: Wi-Fi

8Spectrum sharing works for Wi-Fi!  
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If it works for Wi-Fi, what is the challenge in sharing 
spectrum? 
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● growing complexity in hardware, access technologies, configurations
● unlike Wi-Fi, traditional cellular networks are not designed to operate in spectrum-

sharing mode
● heterogeneity of networks (e.g., power asymmetry, no communication*/coordination 

among networks)
● fair/peaceful coexistence for different traffic types (e.g., URLLC, eMBB)

● Verónica Toro-Betancur, Suzan Bayhan, Piotr Gawlowicz, Mario Di Francesco, CTC-CEM: Low-Latency Cross-Technology Channel Establishment with Multiple Nodes, IEEE WoWMoM 2020
● Piotr Gawlowicz, Anatolij Zubow, Suzan Bayhan, Adam Wolisz, Punched Cards over the Air: CTC Between LTE-U/LAA and WiFi, IEEE WoWMoM 2020
● Piotr Gawlowicz, Anatolij Zubow, Suzan Bayhan, Demo: Cross-Technology Communication between LTE-U/LAA and WiFi, IEEE INFOCOM 2020
● Anatolij Zubow, Piotr Gawłowicz, Suzan Bayhan, Deep Learning for Cross-Technology Communication Design, arxiv, 2019

https://arxiv.org/search/cs?searchtype=author&query=Zubow%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Gaw%C5%82owicz%2C+P
https://arxiv.org/search/cs?searchtype=author&query=Bayhan%2C+S
https://arxiv.org/abs/1904.05401


Challenges

● Accurately identifying the state of the spectrum by spectrum sensing: 
how, when, where to perform sensing and decide on the spectrum 
state

● Selecting the best transmission parameters for peaceful and fair
coexistence, e.g., proactive approaches predicting the channel conditions

● Identifying the spectrum misuse for regulatory enforcement 11

Spectrum opportunity 
discovery 

Spectrum access & 
mobility



(How) can ML help? 
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(How) can ML help? 
● When model-driven approaches 

- fall short of reflecting accurately the physical processes 
- have prohibitive run-time complexity: usually NP-hard problems

● ML: can capture complex interactions between different layers, growing complexity of 
technologies (e.g., Wi-Fi, LTE, NB-IoT, 5G-NR), patterns in spectrum usage, channel 
characteristics

13



(How) can ML help? 

● RL for trial and error: spectrum access and accumulated reward 
● CNNs for image analysis: spectrum measurement in 2D is considered as an image
● RNNs for time-series forecasting problems: spectrum occupancy as sequential data

14
● IEEE Comsoc’s  Best Readings in Machine Learning in Communications: https://mlc.committees.comsoc.org/research-library
● IEEE Comsoc Cognitive Networks Technical Committee https://cn.committees.comsoc.org/

https://mlc.committees.comsoc.org/research-library/
https://cn.committees.comsoc.org/


ML approaches in the spectrum sharing context

● Example-1: Spectrum awareness 

● Example-2: Multiple transmitter localization 

● Example-3: Modulation classification at the edge 
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Regulatory bodies and network operators 
need spectrum awareness 

● to understand its utilization level and usage patterns, and improve efficiency 

accordingly
○ Spatio-temporal characteristics of the spectrum usage (short and long-term)

● for misuse identification and spectrum enforcement
○ Who uses the spectrum? Authorized transmitters or misuse of the spectrum?

■ Advances in both reconfigurable hardware and spectrum usage policies make it easy to misuse 

spectrum without authorization

■ Transmissions at unexpected power levels,  misconfigured devices 

○ Fair coexistence or not? 

16
Long-term trends Near-real-time 

identification
Non-real-time big 

data analysis
Real-time analysis 

and prediction



DNNs for spectrum anomaly detection
● Manual diagnosis following customer 

complaints and operational failure logs

● Proposal: Use sensors scattered in the 
network and use the identified patterns via 
DNNs as baselines to detect spectrum usage 
anomalies resulting from faults and misuse: 
on-the-spot identification of an anomaly 

● Challenge: Location of the sensor, mobility 
profile,  training at each location, at each LTE cell 
and band: not scalable!  

17
Li, Zhijing, et al. Scaling Deep Learning Models for Spectrum Anomaly Detection. ACM MobiHoc 2019. Code: 
https://github.com/0x10cxR1/spectrum_anomaly_detection/ Figures on the following slides are from the paper.

https://github.com/0x10cxR1/spectrum_anomaly_detection/
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Edge!

Solution: Context-agnostic models for spectrum usage and applying transfer learning to minimize 
training time and dataset constraints

https://github.com/0x10cxR1/spectrum_anomaly_detection/


Approach: Training 
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DNN model training
(LSTM/autoencoder) 

Given past time-
frequency spectrum raw 
data for x time units (in 
the absence of 
anomalies)

Next y time units of the spectrum 
data

RMSE between the ground truth signal and LSTM 
model prediction valuesMixture of static and mobile users’ data 

(in the same cell) 



Approach: Detection 
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Trained 
model

Past spectrum
observations

Predicted 
spectrum

Current spectrum 
observations

-
error Yes

> T anomaly

normal

If  divergence from the prediction 
above some threshold T: Anomaly

Does removing context-awareness decrease the accuracy of DNNs (false alarms and 
correct detection)?



Scalable DNN: context-agnostic and transfer learning

● Data: 3 LTE MNOs in U.S January-March and June 2018  
● USRP N210 devices, sensing on 5 MHz bandwidth of each LTE band
● Static, walking, driving
● Large university campus and downtown
● Day and night
● Controlled misuse scenario: unauthorized transmitters and observers within 50m of the misuser 
● LSTM and deep autoencoder as DNN models

22

● Accuracy of models trained on data collected by a static observer when used by another 
static observer at a different location and another mobile observer in the same cell 

● Accuracy of using Cell-A’s model in Cell-B (with and without transfer learning)

● Accuracy of using band-1’s model in band-2



Key take-away: 
● For scalable, accurate identification of spectrum anomalies at the edge, context-

agnostic DNNs (LSTM and deep autoencoders) with transfer learning can help.

23

A unified model for an LTE cell

Comparison with other approaches 
(e.g., rule-based, Kalman Filter), 
DNN outperforms! 

Transfer learning needed for other 
cells

Small training data at the target 
cell: training data reduction by 288x 
compared to training from scratch

Within a single LTE cell Across LTE cells Across different frequency bands

Transfer learning needed for 
other spectrum bands 
(frequency, UL/DL) but more 
changes in the transfer phase 

DL to UL transfer is challenging

f1 f2

3 key findings:



Key take-away: 
● For scalable, accurate identification of spectrum anomalies at the edge, context-

agnostic DNNs (LSTM and deep autoencoders) with transfer learning can help.

24

A unified model for an LTE cell

Comparison with other approaches 
(e.g., rule-based, Kalman Filter), 
DNN outperforms! 

Transfer learning needed for other 
cells

Small training data at the target 
cell: training data reduction by 288x 
compared to training from scratch

Within a single LTE cell Across LTE cells Across different frequency bands

Transfer learning needed for 
other spectrum bands 
(frequency, UL/DL) but more 
changes in the transfer phase 

DL to UL transfer is challenging

f1 f2

3 key findings:

Please see the details in the paper: Li, Zhijing, et al. Scaling Deep Learning Models for Spectrum Anomaly 
Detection. ACM MobiHoc 2019. Code: https://github.com/0x10cxR1/spectrum_anomaly_detection/

https://github.com/0x10cxR1/spectrum_anomaly_detection/


● Spectrum awareness 

● Multiple transmitter localization 

● Modulation classification at the edge 
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ML approaches in the spectrum sharing context



Problem: Multiple transmitter localization (MTL) 
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● Goal: Identify the locations (x, y) 
of transmitters 

● Regulatory body: Legitimate or 

illegitimate transmitter, security 

threats on shared spectrum bands 

(selfish transmitters, jammers 

etc.)

● Mobile network operator: Any 

misuser or better strategizing for 

spectrum sharing

Spectrum 
Monitoring Entity

(x1 y1)?

(x3, y3)?

(x2, y2)?
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● Goal: Identify the locations (x, y) 
of transmitters 

● Regulatory body: Legitimate or 

illegitimate transmitter, security 

threats on shared spectrum bands 

(selfish transmitters, jammers 

etc.)

● Mobile network operator: Any 

misuser or better strategizing for 

spectrum sharing

Spectrum 
Monitoring Entity

Challenge: Multiple transmitters, multiple transmission power levels, channel 
variations! The sensors receive a sum of the signals. 



DeepTxFinder*: CNNs for MTL

28
*Zubow, A., Bayhan, S., Gawłowicz, P., & Dressler, F.  Deeptxfinder: Multiple transmitter localization by deep learning in 
crowdsourced spectrum sensing. IEEE ICCCN, 2020 (invited paper)

● Unknown number of transmitters
● Two transmitters closely located can be 

identified
● Scalability via tile-based operation 
● Goal: low false alarm rate for avoiding waste of 

expert time



Two-step CNN approach

● Step-1: CNN detects the number of transmitters
● Step-2: CNN estimates actual 2D locations of that

many transmitters 

29



Scalability is a challenge: tiling-based approach

● Area of interest is divided into smaller uniform tiles,
● Run prediction on each tile
● Fuse the individual predictions from multiple tiles using majority voting to 

derive the final set of predicted locations 

30



Performance assessment
● Model training

○ On artificial data generated by the simulator, simple pathloss model 

● Metrics:
○ Localization error, cardinality error, detection probability, false alarm, execution time

● Baseline: SPLOT*  
○ Breaks down multiple-transmitter-localization to several single-transmitter localization 

problems
○ Three variants with different threshold value r used for finding the local maximas

31* M. Khaledi, et al., Simultaneous power-based localization of transmitters for crowdsourced spectrum monitoring, ACM MobiCom 2017 [SPLOT]

● Scenarios: 
○ S1 = no shadowing & known Ptx,  
○ S2 = shadowing & known Ptx 
○ S3 = shadowing & unknown Ptx

● Impact of sensor density
● Impact of field size on execution time



Key take-away

● Even under sparse sensor deployment, transmitter locations can be identified
● DeepTxFinder identifies all transmitters, but with lower location inaccuracy! 
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Please see the details in the paper: Zubow, A., Bayhan, S., Gawłowicz, P., & Dressler, F.  
Deeptxfinder: Multiple transmitter localization by deep learning in crowdsourced spectrum sensing. IEEE ICCCN, 2020 



Key take-away

● Even under sparse sensor deployment, transmitter locations can be identified
● DeepTxFinder identifies all transmitters, but with lower location inaccuracy! 

34

Also, please check DeepMTL which beats DeepTxFinder significantly! 
DeepMTL: C. Zhan, M. Ghaderibaneh, P. Sahu and H. Gupta, DeepMTL: Deep Learning Based Multiple Transmitter Localization,  IEEE WoWMoM 
2021
https://github.com/caitaozhan/deeplearning-localization

https://github.com/caitaozhan/deeplearning-localization


(How) can edge AI help? 
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(mobile device interested in transmitting in the uplink or a small base station with 
limited computation capacity than the core network)



(How) can edge AI help? 
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● Need for edge spectrum analytics
○ For timely exploitation of the spectrum, otherwise, spectrum opportunities 

might get lost
○ Lower traffic load (saving from data transmission to the fusion center), 

lower energy consumption
○ Less privacy/security risks



(How) can edge AI help? 
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● F. Restuccia & T. Melodia,  Big data goes small: Real-time spectrum-driven embedded wireless networking through DL in the RF loop, IEEE INFOCOM 2019
● S. Chakraborty, M. Hesham, D. Saha. Learning from Peers at the Wireless Edge. IEEE COMSNETS, 2020.
● N. Soltani, N., K. Sankhe, S. Ioannidis, D. Jaisinghani, K. Chowdhury, Spectrum awareness at the edge: Modulation classification using smartphones. IEEE DySPAN 2019

● FPGA based implementations, e.g., [Restuccia and Melodia, INFOCOM 19]
● Federated learning, e.g., [Chakraborty et al., COMSNETS 20]
● Compressed ML models, e.g., [Soltani et al., DySpan19]



(How) can edge AI help? 
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Modulation classification at the edge
● Identifying modulation type can help to understand which 

technologies coexist/compete in this band, e.g., Wi-Fi, U-
LTE, 5G NR-U

● Classification problem: 24 modulation schemes
● Existing schemes: low accuracy in low SNR regime and 

not designed to work at the edge
● Proposal: 

○ different CNN models for low, moderate, high SNR regimes 
○ Training on GPU and compressing/running it on smartphones
○ Step-1: identify SNR regime
○ Step-2: run the corresponding CNN

40
Soltani, N., Sankhe, K., Ioannidis, S., Jaisinghani, D., & Chowdhury, K. Spectrum awareness at the edge: Modulation classification using smartphones. IEEE 
DySPAN 2019

Wi-Fi: BPSK, QPSK, 
16QAM, 64 QAM, 
256 QAM 

LTE: QPSK, 
16QAM, 64QAM

5G: QPSK, 64QAM, 
256QAM



Modulation classification at the edge

41
Soltani, N., Sankhe, K., Ioannidis, S., Jaisinghani, D., & Chowdhury, K. Spectrum awareness at the edge: Modulation classification using 
smartphones. IEEE DySPAN 2019

Compress the model 
for edge device

Classification at the 
edge

Training on the GPU

<I/Q, SNR, Modulation>



Modulation classification at the edge
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Soltani, N., Sankhe, K., Ioannidis, S., Jaisinghani, D., & Chowdhury, K. Spectrum awareness at the edge: Modulation classification using 
smartphones. IEEE DySPAN 2019

Compress the model 
for edge device

Classification at the 
edge
(i) MSM8917 Quad-core 1.4 GHz (ii) 1.2 GHz (iii) 

Quad-core Cortex-A7, MT6753 8-core 1.7 GHz 

Classification accuracy: 
● No noticeable performance 

difference between GPU and 
smartphone 

Classification time:
● Significant boost in classification

time in the smartphones for
single I/Q sequence!

● GPU underutilized

Memory usage: 
● ⅓ memory with TensorFlow Lite

Tested on three smartphones

Training on the GPU
NVIDIA Tesla V100 with 640 Tensor Cores and 
100 teraFLOPS



Some open questions/challenges

● Scalability (training overhead): MIMO, directional transmissions, more 

dynamic spectrum usage

● Higher frequencies require directional transmission: an opportunity for 

sharing in the spatial/angular domain, but might increase complexity of 

sensing and beamforming for spectrum awareness 

● Energy efficiency, overhead in spectrum usage for centralized models

● Interpretability of ML-based sharing solutions: acceptance by the operators

● Access to data, availability of real-world data

43* Tommy van der Vorst et al, Managing AI use in telecom infrastructures Advice to the supervisory body on establishing risk-based AI supervision, 2019



Key takeaways
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* Ghauch, H., Shokri‐Ghadikolaei, H., Fodor, G., Fischione, C., & Skoglund, M. (2020). ML for Spectrum Sharing in Millimeter‐Wave Cellular 
Networks. Machine Learning for Future Wireless Communications, 45-62.

● Spectrum needs to be shared dynamically, regulatory bodies in favour of sharing
● Model based approaches: 

○ may not capture accurately the essence of the  physical processes due to complex interactions among 
protocol layers, complexity of the hardware, increasing diversity of access technologies, configurations

○ too complex (NP-hard problems) requiring accurate knowledge on, e.g., CSI, leading to high 
signalling/coordination overhead

● Many ML--based proposals, but: 
○ Training challenge, scalability
○ Data availability:  spectrum statistics, transmitter locations
○ Needs more analysis on energy efficiency and overhead leading to more spectrum usage
○ Interpretability

● Hybrid solutions* combining ML and model-based solutions can also be 
promising!
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* Ghauch, H., Shokri‐Ghadikolaei, H., Fodor, G., Fischione, C., & Skoglund, M. (2020). ML for Spectrum Sharing in Millimeter‐Wave Cellular 
Networks. Machine Learning for Future Wireless Communications, 45-62.

● Spectrum needs to be shared dynamically, regulatory bodies in favour of sharing
● Model based approaches: 

○ may not capture accurately the essence of the  physical processes due to complex interactions among 
protocol layers, complexity of the hardware, increasing diversity of access technologies, configurations

○ too complex (NP-hard problems) requiring accurate knowledge on, e.g., CSI, leading to high 
signalling/coordination overhead

● Many ML--based proposals, but: 
○ Training challenge, scalability
○ Data availability:  spectrum statistics, transmitter locations
○ Needs more analysis on energy efficiency and overhead leading to more spectrum usage
○ Interpretability

● Hybrid solutions* combining ML and model-based solutions can also be 
promising!

Thank you!



Literature 
● Li, Zhijing, et al. Scaling Deep Learning Models for Spectrum Anomaly Detection. ACM MobiHoc 2019.

● Rajendran, S., Lenders, V., Meert, W., & Pollin, S. Crowdsourced wireless spectrum anomaly detection. IEEE TCCN 2019.

● Rajendran, S., Meert, W., Lenders, V., & Pollin, S. Unsupervised Wireless Spectrum Anomaly Detection With Interpretable Features. IEEE TCCN 

2019. 

● K. Sankhe, M. Belgiovine, F. Zhou, S. Riyaz, S. Ioannidis, and K. Chowdhury, Oracle: Optimized radio classification through convolutional neural 

networks, IEEE INFOCOM 2019. 

● C. Zhan, M. Ghaderibaneh, P. Sahu and H. Gupta, DeepMTL: Deep Learning Based Multiple Transmitter Localization,  IEEE WoWMoM 2021  

● Anatolij Zubow et al. Deeptxfinder: Multiple transmitter localization by deep learning in crowdsourced spectrum sensing, IEEE ICCCN 2020. 

Zhan, H. Gupta, A. Bhattacharya, M. Ghaderibaneh, Efficient localization of multiple intruders for shared spectrum system,  IPSN 2020.

● Debashri, et al. Detection of Rogue RF Transmitters using Generative Adversarial Nets, IEEE WCNC 2019.

● F. Restuccia & T. Melodia,  Big data goes small: Real-time spectrum-driven embedded wireless networking through DL in the RF loop, IEEE 

INFOCOM 2019

● S. Chakraborty, M. Hesham, D. Saha. Learning from Peers at the Wireless Edge. IEEE COMSNETS, 2020.

● N. Soltani, N., K. Sankhe, S. Ioannidis, D. Jaisinghani, K. Chowdhury, Spectrum awareness at the edge: Modulation classification using 

smartphones. IEEE DySPAN 2019

46

ML-based 
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Awareness 

MTL

Edge 
learning


