On the Impact of Clustering for IoT Analytics and Message Broker Placement across Cloud and Edge

Daniel Happ (TU Berlin, happ@tkn.tu-berlin.de) Suzan Bayhan (University of Twente)

EdgeSys 2020 April 27, 2020

Motivation

Internet of Things (IoT) becoming sharing economy

- Multiple Applications use same sensor data
- Sensor data processing needed for meaningful insights

Storage, distribution, and processing usually in cloud

- Plentiful resources
- Flexible (on-demand, pay-as-you-go)

Cloud has latency and privacy issues, preventing certain use-cases

Moving more processing to the edge

The case for Publish/Subscribe in IoT

■ "Sense once, notify many" translates well to publish/subscribe pattern

- Decoupling properties:
 - Time
 - Synchronization
 - Space

Enable seamless processing operator offloading scheme¹

¹ D. Happ and A. Wolisz, "Towards gateway to cloud offloading in IoT publish/subscribe systems," in 2017 Second International Conference on Fog and Mobile Edge Computing (FMEC), May 2017, pp. 101–106.

Research questions

1. How to place operators and brokers jointly across a cloud/fog/edge topology?

2. What is the impact of clustering of publishers and subscribers on the placement?

3. What is the impact of the network size?

JOI deploys Operators & Message Brokers²

²Daniel Happ, Suzan Bayhan, and Vlado Handziski. 2020. JOI: Joint Placementof IoT Analytics Operators and Pub/Sub Message Brokers in Fog-centric IoT Platforms. Future Generation Comp. Sys. (2020). under review

JOI: Optimal Solution Sketch

Variables:

- x_{i,j}: Operator i placed on node j
- y_{i,j}: Operator i publishes to broker on node j

Constraints:

- Node resources (CPU, memory)
- Node-to-node bandwidth
- Node access network bandwidth

Objective:

Minimize sum of subscriber delays

Greedy Heuristic for JOI

Preparation:

Sort operators by hops to sink (stratum)

Depth-first search:

- Place ops with low stratum first
- Place op optimally (with current knowledge)
- Place its broker optimally (with current knowledge)

Finally:

■ Join brokers until "maximum number of brokers" constraint met

Tabu Heuristic for JOI

Starting-Point:

Best solution of cloud and greedy

In each step, try to improve:

- 1. Placement of one operator
- 2. Placement of one broker
- 3. Operator to broker association

Tabu:

Short term memory

Degrees of Clustering in IoT

Von Mises Distribution models Clustering

- Properties: uniform for β = 0, approaches the positive half of a normal distribution
- Nodes numbered according to delay to pivot node
- Fixed operators follow modified von Mises function

System-level Simulations

Application graphs:

Random, fanout, sequence

Fixed, but random, network topology:

- Edge, fog, cloud
- Realistic delays and bandwidth (public route servers)

Metric: cloud gap

Impact of Clustering on Cloud Gap (Random)

- clustering factor 0-9: cloud deployment best
- clustering factor 12: transition
- clustering factor 15+: improvement by greedy/tabu
- enables joint heuristic based on clustering factor

Placement of Operators (Clustering Factor 18)

- Greedy places most (approx. 80%) operators in the fog
- Tabu improves by putting less operator on edge & mostly more in cloud
- hard to give easy "rules of thumb"

Impact of Network Size (Greedy)

 Difference between greedy and cloud more pronounced in smaller topologies

 Observations hold true for all the sizes considered

Conclusion

Contributions:

- We proposed two heuristics for joint operator & broker placement
- We proposed modified von Mises distributions for modelling clustering
- We conducted simulations to evaluate impact of clustering

Main Result:

Increasing clustering leads to placement towards the edge

Future Work:

- Cluster-aware placement heuristic
- Adaptive/dynamic scheme