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†Universität Tübingen, Germany, e-mail: setareh.maghsudi@uni-tuebingen.de
‡Technische Universität Berlin, Germany, e-mail: anatolij.zubow@tu-berlin.de

Abstract—With increasing demand for video streaming appli-
cations, exploiting cached content at the network edge becomes
paramount to prevent congestion in the link between the wireless
access network and the content providers. However, it is often
challenging to exploit the caches in current client-driven video
streaming solutions due to two key reasons. First, even those
clients interested in the same content might request different
quality levels as a video content is encoded into multiple qual-
ities to match a wide range of network conditions and device
capabilities. Second, the clients, who select the quality of the
next chunk to request, are unaware of the cached content at the
network edge. Hence, it becomes imperative to develop network-
side solutions to exploit caching, in particular for the scenarios
in which multiple video clients compete for some bottleneck
capacity. In this paper, we propose EdgeDASH which is a
network-side control logic running at a WiFi AP to facilitate
the use of cached video content. In particular, an AP can assign
a client station to a video quality different than its request, in
case the alternative quality provides a better utility. This includes,
for example, a function of bits delivered from the cache, video
bit rate, and the buffer stalls. We formulate the quality assign-
ment problem as an optimization problem and develop several
heuristics with polynomial complexity. Our simulations show that
EdgeDASH facilitates significant cache hits and decreases the
buffer stalls only by changing the client’s request by one quality
level, however with some increase in session instability. From our
analysis, we conclude that EdgeDASH benefits are more visible
especially when the clients with identical interests compete for
a bottleneck link’s capacity, over the baseline where the clients
determine the quality adaptation.

Index Terms—Adaptive video streaming, caching, edge, MPEG
SAND, network assistance, resource allocation, WiFi, WLANs.

I. INTRODUCTION

The ever-increasing demand for connectivity and the emer-
gence of high-bandwidth applications have pushed network
operators to seek for solutions that increase the network capac-
ity while using the resource efficiently. The edge networking
paradigm is foreseen as a solution to the aforementioned
challenge, which aims at delivering content or computation
from the proximity of the users, thereby decreasing the traffic
in the network core. Edge caching, in particular, suggests
storing the content at the periphery of the network so that the
network traffic and service latency becomes lower. Moreover,
the operator’s cost decreases due to lower backhaul or inter-
ISP traffic [1]. These benefits are highly desirable especially
for video streaming content, which is bandwidth-hungry and
might jeopardize user’s satisfaction under high latency. More-
over, for networks with a limited backhaul as depicted in
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Fig. 1. The WiFi AP can overwrite a request from its DASH clients to
avoid congestion in its bottleneck link and to leverage its cache. Here, the AP
delivers v1,2 encoded at 5 Mbps from its cache by overwriting the requests
of Client-2 and Client-3. By doing so, the AP can download the requested
content v2,2 by Client-4 with bitrate 4 Mbps from the content provider without
experiencing congestion in its bottleneck link with capacity of 5 Mbps.

Fig.1, it is crucial to exploit the cached content to decrease the
congestion in the link. Although edge caching of the video
content is essential for realizing the aforementioned benefits,
there are several challenges due to the nature of video delivery.
In what follows, we briefly describe some challenges.

First, current video streaming schemes (i.e., HTTP-based
adaptive streaming [2]), rely on multi-level quality represen-
tation at the server-side as depicted in Fig. 1 and quality
selection at the client-side. Although moving the control over
the rate adaptation and content request process to the client
offers high scalability, the network or content providers (CP)
would suffer due to lack of control over the delivery process.
This might result in a lower caching opportunity for the
network provider since the network treats different qualities
of the same content as different content. Second, clients are
unaware of the cached content and thereby cannot favor such
cached content in pure client-driven video streaming solutions.
Consequently, edge cache hits for video content are limited.

In this paper, we propose to exploit the network assistance,
introduced by MPEG server and network-assisted Dynamic
Adaptive Streaming over HTTP (SAND) [3], for realizing the
potential of edge caching even if the users request different
qualities. While network assistance can be implemented in
all stages of the content delivery, we focus on the radio
access network (RAN), which is a WiFi network. Our scheme,
referred to as EdgeDASH, is easy to deploy at the WiFi Access
Points (AP) and can work with any client player. EdgeDASH is
transparent to the SAND-compliant video clients.

Network assistance at a WiFi AP offers many benefits, in-
cluding more informed decisions facilitated by the bandwidth
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feedback from the WiFi AP and better downlink (DL) resource
allocation at the WiFi AP considering the clients’ diversity and
their statistics, e.g., buffer occupancy. Note that network assis-
tance can take many forms, from airtime or quality assignment
to transcoding [4]. But, some network assistance functions are
possible only for HTTP traffic as encrypted traffic is opaque
to the intermediate network nodes [3].1 Our focus here is on
exploiting the cached content for video clients which compete
for a bottleneck link’s capacity. In this setting, as an AP needs
to access to the content information, we assume that network
traffic is not encrypted. Although prior studies [6]–[9] have
established the benefits of network-side solutions, to the best
of our knowledge, only a few proposals such as [1] consider
cached content delivery in a wireless RAN. Hence, our goal
is to develop a quality allocation scheme at a WiFi AP to
enable delivery from the cache while considering the clients’
performance. To this end, our contributions are as follows.
• We devise a resource allocation scheme in which the WiFi

AP might overwrite the client decisions (i) to favor the
consumption of the content from the edge cache and (ii) to
decrease the burden on the capacity-limited bottleneck link.
In contrast to earlier works, e.g., [10], which transfers the
quality selection decision to the network, our approach keeps
the client still in the quality selection process. This design
choice is motivated by the fact that a client might prefer
a certain rate due to various concerns, e.g., a client with
limited remaining battery or mobile data budget might prefer
streaming the video at the lowest rate. Moreover, due to
their rich content catalogue, some users prefer video services
such as YouTube to stream music [11]. In such cases, the
clients might use third party applications, e.g., FireTube,
to deactivate the video, or select the lowest quality due to
the above-mentioned concerns. If the network-side DASH
solution ignores the client’s decision totally, it leads to
unsatisfactory user experience. To remedy this, our solution
defines a tolerance parameter which restricts the WiFi AP’s
quality assignment policy to a limited set of bitrates in the
neighborhood of the quality selected by the client.

• Moreover, our proposal suggests that an AP allocates its DL
airtime to its clients considering the assigned video qualities
and the clients’ statistics, e.g., buffer level, so that the clients
do not experience buffer stalls or low video bitrates. Such
network control is particularly useful when the core network
has a bottleneck link and there are multiple video clients.

• Finally, we provide an analysis of our proposals and discuss
practical aspects such as implementation using SAND [3].
Notation: Throughout the paper, we use ui and vj to

denote client i and video j, respectively. We consistently use
index i and index j to indicate users and videos, respectively.
Moreover, k and m correspondingly represent the index of
a video chunk and quality level. The request of client i is
characterized by the following features: video j, chunk k, and
quality m. Therefore, we denote the request as ri ≡ vj,k,m.
The content that is delivered by the AP is then r̂i ≡ vj,k,m̂.
Note that m and m̂ are not necessarily equal, meaning that the

1In case of encrypted traffic, network provider and CP shall cooperate to
implement the network assistance by signaling certain information [5].

delivered content may have a different quality level than the
requested one. We will denote all requests by λ = [r1, · · · , rN ]
and the content that will be delivered for these requests by
λ̂ = [r̂1, · · · , r̂N ], where N is the number of clients.

II. BACKGROUND ON ADAPTIVE VIDEO STREAMING

To account for the diversity of end-user equipment and net-
work conditions, a video server supporting Dynamic Adaptive
Streaming over HTTP (DASH) divides the video into small
chunks of identical length, e.g., 2-10 seconds, and encodes
each chunk into multiple qualities, e.g., bitrates. The number
of qualities and the required bitrates are a design decision of
the CP. Chunk specification, as well as the location of each
chunk, is stored in the media presentation description (MPD)
file and transmitted to the client at the beginning of a video
session. Any communication between the client and the server
is performed using the HTTP protocol, which is another merit
of DASH: CPs can use ordinary HTTP servers, and video
content can flow through network equipment without being
filtered at the HTTP-friendly firewalls.

After receiving the MPD manifest file, the client knows the
properties of the video content, e.g., the number of quality
levels and average bitrate for each quality level. Based on
this knowledge and some other network state information,
adaptive bitrate selection (ABR) algorithm [2] at the client
decides on which video quality to select for the next chunk.
Usually, chunks are downloaded one by one to avoid any
waste of resources if the user decides to quit the session. The
downloaded chunks are stored in the client’s playout buffer
until their playout time. After some certain number of chunks
are downloaded to the buffer (e.g., a few tens of seconds),
the video starts to play out. This duration between the user’s
request and the first playout is referred to as startup latency.
Throughout the streaming session, there might be times where
the buffer is empty resulting in video stalls. Studies show
that video stalls and long startup latency decrease the user’s
satisfaction level drastically [5], [12]. Stalling ratio measures
the fraction of time a user stays in stall state during the video
session. Note that initial playout policy has a significant impact
on the stalling ratio, e.g., if the playout starts without a certain
media in the playout buffer, the stalls are highly likely under
network congestion. On the other hand, if the playout waits
till many chunks are buffered to avoid stalls, the initial latency
might be very high exceeding a user’s patience.

While there is no single metric capturing user’s quality-
of-experience (QoE) commonly accepted in the literature,
key factors affecting user’s QoE are as follows: (i) stalling
ratio, (ii) startup latency, (iii) quality switches resulting in
instability [13], and (iv) visual video quality measured in
terms of average video bitrate [12]. Hence, an ABR scheme
aims at maximizing the average bitrate while minimizing the
stalling ratio and keeping the startup latency and the session
instability at a tolerated level to the human perception. It is
a challenge to maintain the balance between these conflicting
goals, especially in a multi-user setting where users compete
for shared resources.

Network-assistance, introduced recently by SAND [14],
aims to alleviate possible performance problems by enabling
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protocol messages to be exchanged among network compo-
nents, e.g., wireless AP or CDN edge servers. However, SAND
does not specify how to efficiently use such messages, leaving
space for many opportunities. In particular, SAND defines
four message types: (i) status messages, (ii) metrics messages
such as buffer occupancy, (iii) packets enhancing reception,
and (iv) packets enhancing delivery. If a network entity is
capable of processing these messages or a subset of them,
then it is called a DASH-aware network element (DANE).
Through these messages, a client and DANE can communicate
for having better decisions on the next chunk to request or the
next chunk to deliver [14], [16].

III. RELATED WORK

We categorize the related work into two groups, namely
network-assisted DASH and caching for video streaming.

Network-assisted DASH: So far, several papers demonstrate
the benefits of using DANEs for video streaming. For example,
in [17], DANE allocates bandwidth equally among the clients
and recommends a bitrate to the clients for the next chunk
based on the allocated bandwidth. The client follows the
recommendation only if its estimation is higher than the
recommended value and the buffer exceeds a certain threshold
level. Motivated by the shortcomings of purely client-driven
rate adaptation approaches, [7] proposes to use an SDN
controller to enable centralized control over rate adaptation
of multiple DASH clients. In [7], the SDN controller collects
some information from the clients, e.g., device capabilities,
buffer occupancy, and the like, to maximize QoE of each
client as well as to optimize fairness and resource utilization.
Similar to [7], [8] focuses on the architecture of network-
assistance and develop some schemes using SDN. Despite
sharing identical motivation with [7], our solution leverages
SAND and retains the client-driven design of DASH. We
provide also an algorithmic solution to run at a WiFi AP.

Regarding WiFi-based network assistance, [8] provides a
comprehensive analysis of DANE assistance for rate selection
and queuing on a WiFi network. [18] designs a stall-aware
video streaming system that uses DANE messages when avail-
able. One of the early works on this subject is [9], where the
WiFi AP applies traffic shaping to decrease the frequency of
quality switching. Authors experimentally show the advantage
of two video clients’ benefit from traffic shaping. [19] proposes
to allocate AP resources using a weighted fair queuing ap-
proach and overwriting the client’s decisions when necessary,
i.e, the client adaptation logic is not altered. The closest work
to ours is SEBRA [20], in which a WiFi AP selects the video
bitrates and the channel airtime for each video client, upon the
receipt of a chunk request. SEBRA assumes a high-capacity
AP to ISP link as opposed to our model with a bottleneck link.
With increasing number of wireless devices and video traffic,
we believe that it becomes imperative to consider bottleneck
links between access network and the CP. Also, SEBRA solves
chunk selection problem at every incoming request, whereas
our proposal works only periodically, thereby attaining higher
scalability. In addition, our solution differs from [9] and [20]
which focus only on radio access resource allocation, in that

we exploit edge caching in a more generic setting along with
bandwidth allocation to mitigate the performance impairments
due to the bottleneck links.

Caching for video streaming: In [21], the authors explore
the effect of caching on DASH rate adaptation algorithm.
They then develop a solution to mitigate the rate fluctuations
that arise due to the client’s overestimation of the available
bandwidth when the requested chunk is cached and served
directly from the cache server [21]. In [22], the authors suggest
placing the video contents on the edge servers strategically
such that the initial latency remains below the tolerated latency.
Moreover, the clients consult the cellular base station only
if unable to find the requested quality at the edge servers.
Our work differs from [22] in many ways. First, we allow for
delivering an approximate quality of the requested chunk if
serving the latter increases the cache hits without drastically
decreasing the user’s satisfaction level. Second, in contrast
to the earlier works that consider the cellular networks, our
setting is a single WiFi cell that operates asynchronously. We
discretize the continuous time of WiFi into resource allocation
intervals and quality selection intervals to mark the points of
action by the WiFi AP and the DASH clients, respectively.

A very similar study to ours is [1], which suggests main-
taining some desired trade-off between the visual quality of
the video and the cache hits at the ISP network. They design a
coordinated bitrate selection strategy at the DASH clients such
that clients will favor already-cached chunks at a slight loss
of video quality to increase cache hits. While the solution of
[1] is for an ISP network, our solution is hosted on the WiFi
radio access network which is more practical than placing the
network assistance functionality deep in the core network.

Lastly, by the emergence of end-to-end traffic encryption,
both network assistance and caching schemes that rely on
content-related knowledge become incompatible. However,
there are some works such as [23] and [24] designing mech-
anisms to enable network control, e.g., caching, even for
encrypted traffic. For example, [23] designs a caching scheme
where the CPs can leverage the benefits of caching without
revealing their content to the cache provider. [24] derives QoE
of an encrypted streaming session using supervised learning.

IV. SYSTEM MODEL

We consider a single WiFi AP and multiple WiFi stations
with active video streaming sessions as in Fig. 1. The link
between the WiFi AP and the serving video server is the
bottleneck link with a fixed capacity of Γbh Mbps. In what
follows, we describe other elements of our setting.

Video content: Let V = {v1, · · · , vV } denote the set of V
videos. Each video content vj is divided into multiple chunks.
Each chunk vj,k is then encoded into several qualities denoted
by Qj = {0, 1, · · · , Qj−1} with |Qj | = Qj . The qualities are
uniform across all chunks; consequently, we do not include k
in the quality description. We denote the bitrate of quality m
by qj,m bps. The video provider determines the duration of
each video chunk, typically between 2 to 10 seconds, which
may differ across different contents. We denote the chunk
duration of vj by τj seconds. Note that the encoding process is
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inherently variable, therefore the chunks might have different
sizes. As a result, the actual size of the kth chunk, denoted
by sj,k,m, might deviate from the average chunk size which
is calculated as sj,m = qj,m × τj bits [25]. Since the MPD
manifest includes only the bitrates qj,m to keep the file size
small so that the video client can download it without a long
delay, the AP knows only sj,m, not sj,k,m.

DASH users: Let N = {u1, · · · , uN} be the set of N
clients. Moreover, Ci indicates the physical layer capacity of
the link connecting each client ui to the AP. Each video client
has a playout buffer of Bmax seconds. Moreover, Bi indicates
the buffered video duration (in seconds) at the client. We do
not assume any particular client rate adaptation algorithm. As
described in Section I, we denote the requested content of
client i by ri. If required, we identify the requested content
with its features, namely video j, chunk k, and quality m, as
ri ≡ vj,k,m. In case it is not necessary to specify the quality
level, we omit the last index and use ri ≡ vj,k to simplify the
notation. In addition to the video clients, there could also be
clients with background traffic. However, an AP can slice its
resources for video and other less-QoS sensitive traffic. Hence,
we only consider the video traffic.

Finally, the AP has a storage capacity of S bits for caching.
The cache admission policy is as follows: the AP admits all
the contents while it applies the least-recently-used (LRU)
replacement policy for managing its cache space. We denote
the cache status of the WiFi AP by S = [xj,k,m], where xj,k,m
returns 1 if chunk k of video j with quality m is stored in
the cache. As the cache capacity is limited to S bits, the
inequality

∑
j

∑
k

∑
m xj,k,msj,k,m 6 S must hold at any

time. Please recall that an AP cannot observe the content of
the incoming requests for encrypted traffic. Hence, we assume
an unencrypted setting. However, for encrypted traffic, proxy-
server based approaches as proposed in [23] can be adopted
to realize our proposal. Briefly, the AP hosts a proxy per CP,
which runs our proposal taking the backhaul bandwidth and
DL airtime allocated by the AP as its resource constraints.

V. EDGEDASH: RESOURCE ALLOCATION AT THE WIFI
AP TO ENABLE EDGE CACHING FOR VIDEO STREAMING

Here, we introduce our solution, namely EdgeDASH, which
runs on a WiFi AP for DASH- and cache-aware resource
allocation. While aiming at increasing the number of cache
hits, EdgeDASH considers two aspects: bandwidth efficiency
and QoS of the users.

A. Description of EdgeDASH WiFi AP

Let us first explain the time scale of actions at the client’s
player and the WiFi AP. Fig. 2a illustrates the time points
at which a client and the WiFi AP take actions. Each client
decides on the next chunk’s bitrate with a period approxi-
mately equal to the chunk duration of the demanded video.
We refer to this period Quality Selection Interval (QSI) [15]
which depends on chunk scheduling at the client player (e.g.,
periodic requests, immediate requests after completion of each
chunk, or randomized chunk scheduling [13]). As observed
in [21], in steady state, QSI equals to the chunk duration

TABLE I
KEY NOTATIONS.

Notation Description
ui, N , N DASH client i, set of clients, number of clients
vj , Qj , V and V Video j, number of quality levels of video j, set

and number of videos
vj,k,m Video j, chunk k, quality level m
sj,k,m Chunk size in bits for vj,k,m
sj,m Average chunk size in bits for vj , quality level m
τj Chunk duration of vj in seconds
Tap Resource allocation interval of the AP
Bmax, Bi Buffer capacity (seconds), buffer occupancy of ui
S Capacity of cache in bits
xj,k,m Equals 1 if vj ’s chunk k and quality m is in cache
θi Airtime allocated to ui
φi Decision variable to serve ui from cache
Ci Physical layer link rate of ui
Γbh Bottleneck link capacity (Mbps)
qj,m Bitrate of quality level m for vj
ri, r̂i Request of ui and delivered request of ui (vj,k,m̂)
λ, λ̂ Set of all requests, and set of all delivered requests
N 0 Set of clients waiting for service but have already

been assigned a quality level for their request.
N 1 = N \ N 0 Set of clients waiting to be assigned a quality level

for their request.
µc Weight of cache delivery as compared to delivery

from the backhaul
∆E Tolerated quality difference

denoted by τ .2 Since the clients watch different videos, the
chunk duration τ varies across clients. In case of shorter chunk
duration, a client can react quickly to changes in the channel or
network dynamics, e.g., it selects a different quality matching
the client’s observed link capacity.

As Fig. 2a illustrates, the AP decides on DL resource allo-
cation periodically, which is referred to as resource allocation
interval (RAI). In addition to resource allocation, WiFi AP
solves the video quality selection problem at the beginning
of each RAI. After collecting the client’s chunk requests, the
AP might overwrite the client’s decision for utilizing its cache
resources better. Given that QSI might differ across clients,
the WiFi AP can select the shortest chunk duration as its RAI,
e.g., Tap = min∀vj∈V(τj), where Tap denotes the RAI length.
However, since the QSI is in the order of seconds whereas
WiFi works in a finer time scale for scheduling its medium
access, RAI can be set as a few milliseconds.

Fig. 2a shows that the requests arrive at the AP asyn-
chronously. This happens due to different chunk scheduling
algorithms at clients and different chunk duration of consumed
contents. Consequently, at the beginning of a RAI, the AP
needs to allocate its resources considering the new requests
and those clients who have already been assigned a quality
level at a previous RAI. Let N 0 denote the set of clients who
have already been assigned quality levels. Moreover, we gather
the rest of users in N 1. While assigning video qualities, the
AP should ensure that the allocated resources are sufficient to
deliver the selected quality of the video for each user.

Fig. 2b illustrates the key functional blocks at an

2[21] reports that in the steady state, time between two consequent chunk
requests equals to chunk duration, i.e., τ seconds. Initially, the client requests
video segments until the buffer becomes full, e.g., 10 seconds. Since the buffer
cannot accommodate any new chunk, the client consumes one chunk before
requesting the next chunk resulting in a QSI duration equal to chunk duration.
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Fig. 2. (a) Resource allocation and quality selection time intervals and (b) AP functional blocks.

EdgeDASH WiFi AP, as briefly described next. Request queue
stores the clients’ chunk requests. The quality selection module
checks the request queue as well as its content cache to decide
which requests to send toward the content servers and which
ones to satisfy from its cache in case of any match. As the AP
has a backhaul connectivity with a capacity of Γbh (Mbps),
it takes this capacity limit into account in addition to the
client statistics collected from the clients. In this step, the AP
may decide to serve the user’s request by a cached chunk of
a different quality, if the client’s streaming quality does not
become deteriorated by this difference significantly. Backhaul
scheduler takes the output of the quality selection module
to download requested chunks. The chunks are downloaded
in a FIFO manner and in case the selected qualities exceed
the capacity, there will be a certain queuing latency at the
backhaul link. After fully downloading the chunks, the AP
moves them to the DL queue of each client. The DL scheduler
then allocates the DL radio resources, i.e., its airtime, and
delivers the chunks in a round-robin manner.

B. Problem Formulation

Decision variables: Recall that the request of ui for the
content vj,k,m is denoted by ri. For each user in N 1, the
WiFi AP will decide on the following three parameters: quality
level (m̂i), airtime (θi), and delivery from cache or not (φi).
For users in N 0, the AP assigns only airtime. We explain these
decision variables as follows:
• m̂i: It takes a value from the set of available quality

levels of the video that ui has requested, i.e., m̂i ∈ Qj .
The corresponding bitrate is qj,m̂i

. Since the quality level
might be modified by the AP, we will represent the
assigned content as r̂i = vj,k,m̂i

.
• θi: The WiFi AP has to determine the share of DL airtime

allocated to each user, denoted by θi ∈ [0, 1].
• φi: The client’s request will be satisfied from the cache

(i.e., φi = 1) or from the backhaul (i.e., φi = 0).

Objective: Our proposal aims at delivering a large number
of bits from the cache while maintaining a high streaming
quality. To this end, the AP maximizes the number of delivered
bits (hence the visual quality) prioritizing the cache delivery
over the backhaul delivery while considering the buffer level as

video stall is known to be a significant factor in decreasing the
user satisfaction. Hence, the AP should favor video qualities
that are encoded at higher bitrates but can still ensure that the
client’s buffer level is above a certain threshold (Bmin).

Let B̂i denote the expected buffer level (in seconds) of a
client i when the current chunk with quality m̂i is delivered to
the client. In addition, we introduce µc as a tuneable parameter
that reflects the desirability of cache delivery over the backhaul
delivery. In Section VII, we describe the procedure of AP
to calculate B̂i given the assigned quality m̂i and assigned
airtime θi.3 We first define the utility Ui of user ui as follows:

Ui =


U1 if B̂i > Bmin

U2, if Bmin > B̂i > 0

U3, otherwise.
(1)

where U1, U2, U3 are defined as follows:

U1 = log(qj,m̂i
)(µcφi+(1−φi)) + log(min(B̂i, Bmax)) (2)

U2 = log(B̂i)(µcφi + (1− φi)) (3)

U3 = B̂i. (4)

The rationale behind our choice of utility function is the fol-
lowing: when a candidate bitrate ensures a buffer level above
Bmin, then the associated utility is the logarithmic function of
the video bitrate considering the weight of the cache delivery
and the estimated buffer level. We prefer logarithm function
to reflect the diminishing returns with increasing bitrate in
terms of user’s perceptual quality [6]. When a candidate bitrate
does not cause buffer stalls but cannot satisfy the target buffer
level, then the corresponding utility is the logarithm of the
bitrate multiplied by the cache weight. Finally, if the candidate
bitrate is expected to result in negative buffer levels, we define
the utility as the estimated buffer level. Note that a negative
buffer level indicates a stall with its magnitude reflecting the
expected stall duration. As such, by incorporating the buffer
level in the utility function, we aim at avoiding inappropriate
bitrates that might result in buffer stalls. We use the expected
buffer stall duration as the utility to differentiate among the
quality levels that fail to sustain a smooth playout. As a

3For the simplicity of the notation, we do not include the assigned bitrate
and airtime in denoting the estimated buffer level which depends on these
two factors, i.e., B̂i(qj,m̂, θi).
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result of this choice, if all quality levels are also expected
to lead to buffer stalls, we select the bitrate that results in
the shortest estimated buffer stall duration. Under a request
delivery decision λ̂ = [r̂i],∀ui ∈ N , and airtime allocation
decision θ, we formalize the objective as:

maximize
m̂∈Q,θ∈[0,1]

∑
∀i∈N 1

Ui. (5)

Note that (5) concerns with the quality assignment for users
in N 1. The performance of the users in N 0 will be handled
by appropriate constraints, which we present next.

Constraints:
• If ui is assigned a chunk with the quality level m̂i that exists

in the cache (xj,k,m̂i
= 1), then it is served from the cache

and the content is not downloaded again. In this case, the
following constraints guarantee that φi is 1.∑
m∈Qj

xj,k,m1(m̂i=m) 6 φiQj , ∀ui ∈ N 1, and ri ≡ vj,k,m.∑
m∈Qj

xj,k,m > φi, ∀ui ∈ N 1, (6)

where 1g(·) is the indicator function that yields 1 if the
Boolean statement g(·) is true and 0 otherwise. Thus, the
indicator function in (6) is 1 if the assigned quality is m.

• The difference in the requested and delivered quality levels
is smaller than or equal to ∆E = {0, 1, 2, · · · }. We refer
to ∆E as the tolerated quality difference. We assume that
the system designer selects tolerated quality difference for
each client independently. Alternatively, a client ABR might
also be modified to signal its tolerance level to the WiFi AP.
Obviously, ∆E = 0 implies that only requested quality and
no alternative is acceptable. Formally,

m̂i −m 6 |∆E|, ∀i ∈ N 1 and ri ≡ vj,k,m. (7)

• As the backhaul capacity is limited to Γbh Mbps, we have:∑
∀i∈N 1

(1− φi)qj,m̂i
6 Γbh, (8)

in which we assume that downloading of the previously
requested content for users in N 0 is already completed. In
case it is not, the AP considers the remaining bandwidth for
these new requests.

• The DL airtime of the WiFi AP is limited to 1, which can
be formalized as: ∑

∀i∈N

θi 6 1. (9)

For taking the uplink traffic into account, one can further
restrict the allocated time, implying that

∑
∀i∈N θi 6 θ

where 0 < θ < 1 [20].
• While utilities defined in (1) favor qualities that would avoid

buffer stalls, the AP can additionally assert for each client a
lower bound on the expected buffer level. Formally,

B̂i > Φ, ∀i ∈ N , (10)

where lower values of Φ (e.g., zero) increase the chances of
finding a feasible solution.

In this setting, the challenge is to solve the following opti-
mization problem:

max
m̂,θ,φ

∑
∀i∈N 1

Ui (11)

s.t. (6), (7), (8), (9), (10), (12)

m̂i ∈ Qj , ∀i ∈ N 1 and ri ≡ vj,k,m (13)
θi ∈ [0, 1], ∀i ∈ N (14)

φi ∈ {0, 1}, ∀i ∈ N 1. (15)

Due to the existence of decision variables belonging to a
discrete set, the problem in (11)-(15) is computationally hard.
In the next section, we address this challenge by first modeling
our problem as a multiple choice knapsack problem (MCKP),
which is NP-hard [26]. Afterward, we propose a heuristic
solution based on an approximation algorithm for solving
MCKP [27]. In our approach, we first assume equal airtimes
for each client and concentrate on the quality assignment.
Afterward, we assign airtimes given the quality levels.

VI. VIDEO QUALITY ASSIGNMENT AS A MULTIPLE
CHOICE KNAPSACK PROBLEM

To simplify the NP-hard problem formulated in Section V,
we divide it into two problems, namely (i) quality selection
and (ii) airtime assignment. In brief, the solution is as follows:
In the first step, we adapt an existing solution for 0-1 MCKP,
namely Compositional Pareto-algebraic Heuristic (CPH) [27],
to our problem assuming equal airtimes for all clients. In the
second step, we propose an airtime assignment approach that
aims at minimizing the buffer stalls.

A. Compositional Pareto-algebraic Heuristic (CPH)

In the following, we provide a brief overview of compo-
sitional Pareto-algebraic Heuristic (CPH) [27] and introduce
a procedure to adapt it to solve the formulated video quality
assignment problem.

CPH is designed to solve multidimensional MCKP. Fig.
3a shows a toy example for a single-dimensional MCKP in
which there are three groups (corresponding to the clients),
each with multiple items (corresponding to the quality levels).
For each item in each group, there is an associated utility
and resource consumption value. Moreover, the knapsack has
a maximum capacity (corresponding to the capacity of the
bottleneck link, e.g., minimum of DL and backhaul capacity).
The objective of CPH is to select an item from each group
such that the total utility is maximized without violating the
resource constraint in each dimension. Note that although CPH
is designed for multidimensional MCKP problems, it does not
entail extra complexity or overhead when applied to solve the
single-dimensional problems. Rather than considering all of
the groups at once, CPH takes two groups and merges them
simply by applying the Cartesian product.4 Afterward, in this
set, CPH eliminates the configurations that are dominated or
that are infeasible due to a violation of resource constraints.

4As shown in Fig. 3a, Cartesian product of G1 and G2 results in G1G2.
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G1: client1, video1

U1=5, r1=100
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U1 = 6, r1=150
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1
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(30, 1350, [r1, r1, r4])
(23, 650, [r2, r1, r1])
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(26, 950, [r2, r1, r3])
(35, 1600, [r2, r1, r4])
(27, 1000, [r2, r2, r1])
(29, 1150), [r2, r2, r2])
(30, 1300, [r2, r2, r3])
(39, 1950, [r2, r2, r4])

Max-utility 
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Candidate solutions

Infeasible
configurations
cost > 1200

Pareto
configurations

G3: client3, video3

(11, 250, [r1, r1])
(15, 600, [r1, r2])
(16, 500, [r2, r1])
(20, 850, [r2, r2])
(7, 950, [r3, r1])
(11, 1300 , [r3,r2])

G1G2

G1: (10, 350)
G2: (10, 500)
G3: (9, 300)

G3

G1G2G3

(a) CPH in original form.

(21, 500, [r1, r1])
(23, 1300, [r1, r2])
(17, 1700, [r1, r3])
(25, 1300, [r2, r1])
(27, 800, [r2, r2])
(21, 2000, [r2, r3])
(20, 1700, [r3, r1])
(22, 2000, [r3, r2])
(16, 1200, [r3, r3])

1
(29, 800, [r2, r2, r2])
(42, 2000, [r2, r2, r3])
(44, 2400, [r2, r2, r4])
(27, 1300, [r2, r1, r2])
(40, 2500, [r2, r1, r3])
(42, 2900, [r2, r1, r4])
(25, 1300, [r1, r2, r2])
(38, 2500, [r1, r2, r3])
(40, 2900, [r1, r2, r4])
(22, 2500, [r3, r1, r2])
(35, 1700, [r3, r1, r3])
(37, 3300, [r3, r1, r4])

Max-utility 
solution

client1: (9, 1200), quality-3
client2: (11, 500), quality-1

client3: (15, 1200), quality-3

Same content, 
no Pareto eliminations

Select L best
solutions

2

(27, 800, [r2, r2])
(25, 1300, [r2, r1])
(23, 1300,  [r1, r2])
(20, 1700, [r3, r1])

Configurations that would
have been eliminated in

case of Pareto elimination

G3: client3, video1

Pareto elimination if to be merged
with another content group

Contributing to the final 
solution:(20, 1700, [r3, r1])

G1: client1, video1

U1=10, r1=500
U2=14, r2=800
U3=9, r3=1200

U2 = 2, r2=800
U3 = 15, r3=1200

G2: client2, video1
U1=11, r1=500
U2=13 r2=800
U3=7, r3=1200

Resource
constraint: 1900

G3: client3, video1

U4 = 17, r4=1600

CPH
original

(b) CPH adapted for the quality selection problem.

Fig. 3. (a) A schematic overview of CPH, as explained in Section VI: To reduce the size of each partial configuration, at each step, CPH removes configurations
that are Pareto-dominated or violate the resource constraints. (b) CPH adapted to our quality selection problem: The clients that request the same content are
merged without Pareto elimination. This variant of CPH keeps the shaded configurations in Step 1 due to the following reason. These configurations might
later yield the maximum utility when another client requests the same content. In this example, the maximum utility consists of a partial configuration (20,
1700) that would be eliminated by CPH resulting in a lower utility, i.e., 27 instead of 35.

For instance, in Fig. 3a, configuration (20, 850, [r2, r2])5

dominates (7, 950, [r3, r1]) as its utility is higher while its
cost is lower. At each step, CPH only keeps the Pareto-optimal
configurations, which significantly reduces the complexity.
CPH continues merging the set of Pareto-optimal points with
one of the remaining sets (see Step 2 in Fig. 3a). Optionally, to
control its runtime and space complexity, at each intermediate
step, CPH retains only L configurations with the highest utility
out of all Pareto-optimal points; where L is a parameter to be
tuned based on the desired runtime and acceptable complexity.
After merging all sets, the configuration with the highest utility
is selected. In Fig. 3a, the best decision is to assign quality
level 2 to all clients which achieves a utility equal to 29 with
resource consumption value of 1150. We do not consider any
optional steps, but, various approaches to optimize the merging
step, e.g., the order of sets to be merged, are introduced in
[27]. Example in Fig. 3a corresponds to our quality assignment
problem when the clients request different contents and the
AP’s cache does not contain any of the candidate chunks.

In its original setting, CPH is not applicable to our formu-
lated problem where the AP has a cache and there might be
clients requesting the same content. Hence, we propose the
following procedure summarized in Alg. 1 to adapt CPH to
our setting. First, we consider the cached content and assign
their resource consumption to zero (Line 5). As described
before, CPH merges the groups by applying Cartesian product
to the selected groups (Line 11 and Line 12) where utility
and cost of the two members are added. Nonetheless, in our
problem, it is necessary to check if the two settings correspond
to the same content (Line 13 where vps,a denotes video id(s)
of the configuration a in the partial solution set Gps), so
that we do not add the cost twice (Line 14). This implies
that the AP downloads each video item from the backhaul
only once. In fact, this step breaks the main requirement
of CPH that the utility and resource consumption of two

5A configuration is identified as a triple. For example, in (20, 850, [r2, r2]),
20 represents the total utility, 850 is the total cost, and [r2, r2] shows the
determined quality level for each client.

configurations are additive. In case a content is requested by
multiple clients, the MCKP abstraction might result in low
utility. If different contents are requested, we simply add the
costs and utilities (Line 16).

Consider the example in Fig. 3b in which all clients request
the same content. Notice that the utilities for the same quality
level might differ from one client to another as the clients
might have different buffer levels or channel link capacities.
We modify CPH as follows: if a content is requested by
multiple clients, we first merge these groups requesting the
same content without Pareto elimination. Skipping the Pareto
elimination step is crucial, as a Pareto-dominated configuration
in a single-user setting (e.g., gray-shaded configurations in Fig.
3b) might yield the highest utility in a multi-user setting with
a feasible cost. In Fig. 3b, the final solution achieving the
maximum utility stems from one of the configurations that
would have been eliminated if Pareto elimination had been
applied. As Fig. 3b shows, CPH without any modifications
would result in a lower utility: 27 as compared to 35. After all
groups associated with this content are merged one by one, we
reduce the set to Pareto-optimal points, since from now on we
do not have the risk of eliminating potentially good solutions.
While this approach works for small settings, the complexity
increases significantly for scenarios such as when many clients
request the same contents. Therefore, at each intermediate
step, only L configurations with the highest utility can be
kept for maintaining a higher scalability. However, tuning
L is not straightforward. Hence, we apply Pareto minimiza-
tion (Line 19). For cases where with no feasible configuration,
the AP does not overwrite the client requests (Line 21).

For a video with Q quality levels, the worst-case complexity
of CPH is O(N max(Q logQ,L4)) [27]. Note that the actual
complexity is usually much lower, e.g., there are 2∆E + 1
quality levels in each configuration set rather than Q.

B. Airtime assignment for minimizing buffer stalls

After assigning the quality levels, i.e, λ̂ = [r̂i], we proceed
with airtime assignment. To decrease the probability of buffer



8

Algorithm 1 CPH-based quality assignment (CPH)

1: Input: Requests to be assigned a quality (λ = [ri]), client-
AP link capacity considering equal airtime allocation, AP
DL client queues (Di), client buffer level (Bi), available
backhaul capacity (Γbh), cache status (S = [xj,k,m])

2: Output: λ̂: video chunks to deliver for each ui.
3: Find set of tolerated quality levels (Mi) for each client

request ri using tolerated quality difference ∆E .
4: Calculate utility Ui,m for each client and quality m ∈Mi.
5: Calculate the cost of delivering each quality as:
ωj,m = qj,m if xj,k,m = 0; and 0, otherwise.

6: Form a group per ui using utility and costs
Gi = {< Ui,m, ωi,m, vj,k,m >} where m ∈Mi.

7: Set partial solution: Gps = Gi and G =
⋃
∀l∈λGl \Gi.

8: while G 6= ∅ do
9: Select a group Gi from G for merging with Gps.

10: Initialize partial solution G′ps = ∅.
11: for Gps,a ∈ Gps do
12: for Gi,b ∈ Gi do
13: if vi,b ∈ vps,a or vi,b == vps,a then
14: Gps,c =< Ups,a + Ui,b, ωps,a, [vps,a, vi,b] >
15: else
16: Gps,c = < Ups,a+Ui,b, ωps,a+ωi,b, [vps,a, vi,b] >
17: G′ps = G′ps

⋃
Gps,c

18: G = G \Gi and Gps = G′ps
19: Get Pareto-optimal points: Gps = Pareto-min(Gps).
20: if Gps = ∅ then
21: return λ̂ = [ri].
22: else
23: Get the configuration with the maximum utility from

Gps and retrieve the corresponding quality levels r̂i.
24: return λ̂ = [r̂i].

stalls, the AP aims at sustaining a minimum buffer level (in
seconds) for its clients, e.g., Bmin > 0. To this end, the AP
calculates the required airtime to reach the aforementioned
target level based on the current value Bi. However, if there
is not sufficient content in the AP’s downlink queue for some
specific client, the allocated airtime is wasted. Hence, the AP
shall consider the queue size (in bits) for each client (Di).
Formally, the AP calculates the required airtime for each
specific client ui as follows:

θi = min(Di, (Bmin −Bi)b̄i)/(CiTap), (16)

where b̄i is the average bit rate of the chunks that are in the
DL queue for client ui. If the required airtime is positive, the
AP moves ui to the list of clients that might experience buffer
stalls, referred to as the set of risky clients. In case the sum
of all the required airtime by such clients exceeds 1, then the
AP allocates each client some airtime which is proportional to
its actual need normalized by the total required airtime of the
risky clients. The clients who have already sufficient media
in their buffer (e.g., two chunks are already in the buffer) are
not served in this interval. If the total required airtime for
risky clients is less than 1, first each risky client receives its

required airtime. Next, the AP divides the remaining airtime
equally among the remaining clients not in the risky set.

VII. QUALITY ASSIGNMENT FOR AVOIDING
BUFFER-STALLS (BUFF)

As discussed in Section VI, in some cases (e.g., when
multiple clients request the same content), CPH might have
inferior performance compared to some heuristic that does
not use the MCKP abstraction. To address this issue, we
propose BUFF, whose objective is to assign a high video rate
while avoiding buffer stalls. As the cached chunks might be
prioritized, BUFF also uses a weighted sum as its objective:
log(qj,m̂i

)(µcφi+(1−φi)).
Let B̂i denote the buffer level of client ui when the currently

requested chunk, e.g., chunk i, is downloaded to ui. B̂i
depends on three factors, namely, (i) current state of the buffer,
(ii) from where the chunk is delivered (i.e., backhaul or the
cache), and (iii) the state of the current downlink queue of
ui at the AP. Based on the combination of the aforementioned
factors, a number of scenarios might occur. Below, we explain
these cases which are illustrated in Fig. 4.
• Case I: Backhaul, empty client DL queue- In this case,
ui requests some chunk i that is not stored in the cache.
Consequently, it has to be downloaded from the backhaul
link that might also have other chunk requests waiting
in the backhaul queue. Let Tb denote the latency due to
backhaul download, which depends on the quality of the
chunk as well as the queue size at the backhaul FIFO queue.
Moreover, the AP does not have any other chunks to deliver
to ui, meaning that the DL queue of ui is empty. The
downloaded chunk is then transmitted in the DL according
to the airtime allocated to ui. Let Tdl indicate the required
time to complete the transmission. Thus, in total, the delivery
of the chunk to ui takes Tb + Tdl time units. Meanwhile,
the client buffer depletes, resulting in B̂i=Bi−(Tb+Tdl).
As mentioned earlier, B̂i can take negative values, reflecting
the buffer stall period.

• Case II: Backhaul, non-empty client DL queue- This case
is similar to Case I, except for the fact that the client’s DL
queue is not empty. As a result, the AP transmits the existing
chunks to the client while simultaneously downloading the
chunk from the backhaul. Hence, on one hand, the buffer
level decreases due to the playout, and on the other hand,
it increases by downloading the queued chunks. Therefore,
we calculate the number of chunks that can be transmitted
during Tb. Let Di and τD indicate the queue size in bits and
the corresponding number of chunks, respectively. Then, the
AP requires Di/(Ciθi) seconds to transmit all bits in its
DL queue. If Tb is shorter than this duration, the newly-
downloaded chunk has to wait until all bits are delivered.
Otherwise, the chunk does not experience any queuing delay
in the downlink. Consequently, the estimated buffer yields
B̂i = Bi −max(Di/(Ciθi), Tb)− Tdl + τD.

• Case III: Cache, empty client DL queue- In this case, it
is clear that B̂i = Bi − Tdl.

• Case IV: Cache, non-empty client DL queue- Here the AP
first transmits the existing chunks in the DL queue. Subse-
quently, we calculate B̂i as B̂i = Bi−Di/(Ciθi)−Tdl+τD.
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Algorithm 2 BUFF

1: Input: Requests to be assigned a quality (λ = [ri]), client-
AP link effective capacity, AP DL client queues (Di),
client buffer level (Bi) , available backhaul capacity (Γbh),
cache status (S = [xj,k,m])

2: Output: λ̂: video chunks to deliver for each ui.
3: Initialize quality assignment list as r̂ = [].
4: Find the candidate qualities for each client request using

tolerated quality difference ∆E .
5: Calculate utility of each client and the quality pair Ui,m.

Add it to the set of utilities U .
6: Calculate the delivery costs ωi,m.
7: while λ! = ∅ and Γbh > 0 do
8: Get the best setting: (i∗,m∗) = arg maxi,m U .
9: Assign quality m∗ to the request of ui∗ : r̂i∗ = m∗ and

the corresponding chunk is content vj∗,k∗,m∗ .
10: Remove ri∗ from unassigned requests, i.e., λ = λ\ ri∗ ,

and all configurations of ui, i.e., U = U \ Ui∗,.
11: Set the cost of all requests for the chunk vj∗,k∗,m∗ to

zero, i.e., ωl,m∗=0, where rl = vj∗,k∗ .
12: Decrease the available backhaul as Γbh = Γbh − ωm∗ .
13: Remove infeasible settings with ωl,m > Γbh from U .
14: Append assigned quality r̂i∗ to λ̂.
15: return λ̂

In the rest of this section, we describe our proposed
algorithm BUFF whose procedure is briefly summarized in
Alg. 2. The AP first finds all of the quality levels that are in
the tolerated range of the client (Line 4). Moreover, the AP
analyzes the expected buffer level assuming identical airtime
allocation. Since the goal is to avoid any buffer stall, the AP
omits the quality levels that cannot fulfill this goal. However,
if the quality level is the minimum level that can be assigned
to the client, the AP keeps it as the only viable option. It then
calculates the utility of each quality level (Line 5). Afterwards,
it greedily assigns the quality levels by picking the highest util-
ity among all of the client-quality pairs (Line 8). After the AP
assigns some client ui a quality level, the cost of the remaining
clients demanding the same chunk becomes zero since the AP
does not download a content multiple times (Line 11). The
AP decreases the available backhaul capacity considering the
bitrate assigned in this step (Line 12) and removes the quality
levels whose bitrate exceed the available remaining backhaul
capacity (Line 13). BUFF terminates either when at least one
of the following conditions holds: (i) all clients are assigned a
quality level; (ii) the backhaul capacity is exhausted. Finally,
BUFF uses the same airtime assignment approach in Sec.VI-B.

The computational complexity of BUFF is calculated as
follows. For each client, BUFF calculates the utility for
all tolerated quality levels resulting in min(2∆E + 1, Q)N
operations. Afterward, it finds the maximum utility at each
iteration. The iterations continue until either all clients are
assigned a quality level or the backhaul is exhausted. Assum-
ing the first case occurs earlier, then the complexity yields
O(min(2∆E + 1, Q)N2).
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Fig. 4. Illustration of the buffer dynamics while the current requested video
is delivered. Case I: During the download, the AP waits as it has no bits to
transmit to the client. Hence, the client’s buffer will deplete. Case II: Client
buffer both depletes with the rate of playout and increases with the rate of
downloaded video from the AP’s queue. Time needed to download the current
chunk is shorter than the time needed to transmit all bits in the queue. As
a result, the currently downloaded chunk experiences queuing latency in the
AP’s queue before it is delivered to the client. Case III: The content will be
delivered directly from the cache. Case IV: Since the AP has other chunks to
deliver to this client, the content fetched from the cache waits till the previous
chunks are delivered to this client.

VIII. PERFORMANCE EVALUATION

To evaluate our proposals, we conduct simulations using our
system-level WiFi simulator developed in Python.6

A. Evaluation setting

The WiFi AP operates on a channel of 40 MHz and we
model the AP-client link as a Keenan-Motley channel [28].
At the client-side, the adaptation algorithm is the rate-based
adaptive (RBA) algorithm [29]. Briefly, the client selects the
highest bitrate smaller than the estimated rate. As rate estima-
tion approach, we use harmonic-rate estimation algorithm [30]
which computes the harmonic mean of the previously down-
loaded five chunks. For the initial chunks, there is no data to
estimate the rate; therefore, the client picks the lowest bitrate
until it fills out its buffer. In essence, most of the DASH clients
follow this approach to ensure low startup latency. A client can
generate back to back requests for the chunks to fill its buffer
quicker in the initial phase, i.e., before watching the first chunk
of the video. After the client fills the buffer and playout starts,
the client can have at most three requests on the fly. Moreover,
when the buffer is full, the client does not generate any new
requests until the buffer has some space for the new chunks.

As our video content catalogue, we used both a real video
trace [25] and synthetic video set. The data set in [25] has
23 video clips encoded using H.264 encoder, each with either
16 mins or 10 mins length. We follow the recommendation
of some earlier work7 to use chunk sizes of 2-4 seconds
that finely addresses the trade-off between overheads and
throughput efficiency. The average video bitrates range from
232 Kbps to 4273 Kbps. Each video file has the actual
chunk size information. We also generate synthetic traces with
higher bitrates, e.g., from 100 Kbps to 15 Mbps, and with 19
quality levels. As the trends are similar, we report results from

6Source code of the simulator can be provided on request.
7Please see more at https://bitmovin.com/mpeg-dash-hls-segment-length/.
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Fig. 5. Impact of the number of DASH clients on the video quality, the cache bit hit ratio, and the stalling ratio.

the synthetic trace. We assign each client a video randomly
from the video catalog considering Zipf content popularity
model with exponent 1.2. We assume the existence of a high-
capacity cache to keep the impact of the cache admission
and replacement policy minimal. The cache is initially empty
and gets filled over time with requested contents that are
downloaded from the CP. Note that our aim here is to analyze
the performance of our proposals when the content is expected
to be in the cache. Hence, we choose a setting, e.g., Zipf
exponent 1.2, small content catalogue and a large cache, which
ensures that the AP finds some requested content in the cache
and might decide to deliver such cached content.8

Unless otherwise stated, we use the following parameters:
∆E = 2, Bmax = 15 seconds and Bmin = 4 seconds,
µc = 1.3, Γbh = 20 Mbps, N = 10, V = 10, Tap = 0.5
seconds, and RAI = Tap. Clients are uniformly distributed in
the coverage area of the AP, which we model as a circle with
a radius of 70 meters.

We evaluate the following schemes:
• CPH-EQ: CPH with equal airtime allocation,
• CPH: This approach is CPH with an airtime allocation

that considers the buffer occupancy of each client,
• BUFF: BUFF with airtime allocation identical to CPH,
• CLIENT: The AP acts as a repeater without checking if

the requested content is already cached or not. Moreover,
it allocates the airtime equally among its clients, and

• CLIENT-CACHE: Similar to CLIENT, this scheme
does not assign a quality level. However, different from
CLIENT, it first checks the cache and delivers the re-
quested content from the cache upon availability.

Among the aforementioned schemes, CLIENT is the baseline,
as it corresponds to the usual operation of client-driven DASH.
When CPH variants and BUFF cannot find a feasible solution,
the AP does not change the requests and delivers the requested
qualities. We run each scenario for 200 times and report the
average of the statistics along with 95% confidence intervals.

B. Performance analysis

Impact of the number of clients: Fig. 5 shows the per-

8Our simulations of a scenario with Zipf exponent 0.7, Γbh=50 Mbps,
V =100 show that trends are largely in agreement with the ones reported here.

formance of each scheme as a function of the number of
DASH clients (N ). In Fig. 5a, we observe that all schemes
maintain a lower video bitrate with larger N while CPH
variants sustain the highest video bitrates without resulting
in many stalls (Fig. 5b). For example, for a single user,
CPH provides 3 Mbps higher bitrate corresponding to 74%
improvement over CLIENT, whereas the improvement is 112%
when N = 20 enabled by 0.3 Mbps higher bitrate. Similarly,
BUFF provides 45% and 56% improvement for N = 1 and
N = 20, respectively. With increasing N , the stall ratio
increases for all schemes. However, the growth shows a higher
rate for the variant of CLIENT such that the video session
might become very unpleasant. As a comprehensive example,
consider the following scenario. With only a few clients,
streaming is smooth without interruptions for all schemes, as
shown by Fig. 5b; nevertheless, for N = 5, CLIENT results in
stalls more frequently, specifically around 3-4% of the session.
With larger values of N , stalls might occur even more often,
as frequent as 6-8% of the session, whereas it remains around
1% for our proposals.

With respect to the video bitrate performance, the schemes
can be sorted as follows: CPH or CPH-EQ, BUFF, CLIENT-
CACHE, and CLIENT. There is almost no quality difference
between CPH and CPH-EQ while we observe a slightly higher
cache bit hit ratio in Fig.5c achieved by CPH-EQ in some
settings. This higher cache bit hit rate could be due to the
similar link capacity observations of the clients, which result
in requesting the same video qualities. Moreover, we believe
that CPH-EQ can maintain the same performance as that of
CPH because of the high capacity of the AP-client links.
As opposed to the backhaul link whose utilization is around
90%, the client-AP capacity is sufficient to serve all of the
clients without resulting in long queues at the AP. In this
scenario, the AP-client perceived link capacity is around 5-
38 Mbps per client. Note that the perceived capacity depends
on the activities of all of the clients since there might be
some time intervals where the clients are in the OFF-state
in the well known ON-OFF cycle of the DASH [2]. Under
high AP-client link capacity, the airtime allocation affects
the performance only marginally, as confirmed by almost no
performance difference between CPH and CPH-EQ for low
N . However, for larger N , as Fig. 5b shows, CPH maintains
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Fig. 6. Impact of increasing backhaul capacity under N = 10, synthetic video data, 10 videos.

slightly lower stalling ratio than CPH-EQ. Moreover, although
BUFF achieves the lowest buffer stalls, it comes at the expense
of lower video quality compared to CPH variants and lower
cache hits compared to CLIENT-CACHE.

Despite enabling cache delivery in CLIENT-CACHE, this
capability without quality assignment does not suffice to
improve client performance as we observe high stalling ratio
in Fig. 5b. With increasing N , CLIENT-CACHE starts to find
content in the cache and therefore we observe a slight decrease
in the stalling ratio in Fig. 5b. In summary, for a large number
of DASH clients, CPH achieves a significantly higher cache
hit ratio as seen in Fig.5c while simultaneously providing the
highest video bitrate and keeping the buffer stalls very close
to that of the BUFF.

Please note that our schemes may suffer from the same
problems as the client-driven approaches. The problems arise
since the bitrate associated with a quality level is only an
average value, which might differ from the actual chunk size.
For example, the actual chunk size might be much larger
than the one calculated using the denoted bitrate which then
requires a longer time to download from the backhaul and to
transmit to the client. Also, our proposals might suffer from the
sub-optimal decisions at the client’s quality selection scheme
as the AP considers the requested rate and deviate from it only
within the limits of the tolerated difference. Another option is
to completely overwrite the client’s requests which, however,
conflicts with the client-driven nature of DASH.

Impact of the backhaul capacity: To analyze the impact of
the backhaul capacity Γbh, we fix the number of clients to
10. As Fig. 6 shows, for all backhaul capacity settings, CPH

and CPH-EQ outperform the variants of CLIENT and BUFF in
most of the performance metrics. For example, when backhaul
capacity is sufficient (Γbh > 20 Mbps), the stalling ratio is zero
for all schemes in Fig. 6a. Nonetheless, the video bitrates are
lower for CLIENT variants and BUFF (Fig. 6b).

Comparing BUFF and CPH, we can argue that BUFF is
a better choice when Γbh = 5 Mbps as it sustains a lower
stalling ratio compared to CPH and CPH-EQ. In all other
cases, CPH and CPH-EQ should be the choice not only for
leveraging the cached content (Fig. 6c) but also for a shorter
initial latency (Fig. 6d). However, we observe in Fig.6e that
this performance improvement comes at the expense of higher
instability [13] due to more frequent quality changes to fully
utilize the existing cached copies and the available backhaul
capacity. This effect is more visible when the backhaul is
a bottleneck, e.g., Γbh = 5 Mbps. With increasing backhaul
capacity, the instability of the CPH variants approach to that
of CLIENT variants as the AP does not need to overwrite the
client requests as often. However, we still observe a higher
instability for CPH variants which motivates the need for
including instability as a constraint in the decision logic of
CPH. Finally, we report backhaul utilization ratio in Fig. 6f
which shows that the CPH variants and BUFF could utilize
the backhaul capacity better while CLIENT variants leave
the capacity underutilized presumably due to an inaccurate
estimation of the link capacity.

Impact of the cache delivery weight: Fig. 7 shows the impact
of increasing cache delivery weight µc when Γbh=20 Mbps.
CPH variants benefit from increasing µc from 1 to 1.5 slightly
in terms of higher video quality and significantly regarding
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Fig. 7. Impact of cache weight µc, synthetic video files.
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Fig. 8. Impact of tolerated quality difference, 10 synthetic traces, 20 Mbps backhaul capacity.

cache hits as shown in Fig. 7a and Fig. 7b. The performance
becomes stable after µc > 1.5. Similarly, Fig.7c shows that
increasing µc decreases the backhaul utilization first but stabi-
lizes afterward. In this setting with 20 Mbps backhaul capacity,
almost all schemes sustain a smooth streaming session without
a buffer stall. The best setting for µc is 1.5 for this scenario as
the cache hit ratio increases to approximately 12% for CPH
variants from 7% when µc = 1.
Impact of the tolerated quality difference: Fig. 8 shows
the impact of the tolerated quality difference (∆E). Note that
∆E = 0 corresponds to the case where AP does not overwrite
the client’s decision. In other words, the AP serves the client
only with the requested quality, which is naturally fetched
from the cache upon availability. For ∆E = 0, our proposed
schemes offer benefits compared to CLIENT in terms of cache
hits (Fig.8b) in case of a relatively high backhaul capacity
as in this case. However, CLIENT-CACHE suffices to realize
the mentioned performance improvement when ∆E = 0 as
observed in Fig.8b. When ∆E is 1 or 2, CPH variants offers
an improvement in video quality in Fig.8a and in cache hits
in Fig. 8b. Although stall ratio is already low around 1% for
all schemes (Fig.8c), CPH variants can nevertheless provide
some benefits with respect to buffer stalls. Another observation
is a visible increase in stall ratio for network-assisted schemes
when ∆E = 4 in Fig.8c. Hence, ∆E should be set to 1 or 2
to ensure that CPH variants can still achieve an improvement
in cache hits and video quality. Meanwhile, increasing ∆E for
BUFF leads to higher video quality but lower cache hits.
Impact of number of videos: Fig. 9 shows the change of

performance with increasing number of video contents. If
the traffic is only for one video, our schemes, which exploit
the cache, provide a significant improvement in the cache
hits (Fig. 9a). More precisely, when V = 1, almost 57% of
the bits are served from the cache under CPH and CPH-EQ,
compared to 15% under CLIENT-CACHE and 11% under
BUFF. Delivering from the cache results in the client’s rate
adaptation algorithm to request a higher quality video. As
a result, compared to BUFF and CLIENT variants, CPH
and CPH-EQ offer better quality, which can be observed in
Fig. 9b. With more diverse contents or diverse interests of the
users (e.g., a lower Zipf exponent such as 0.7), it becomes less
likely for the AP to find the content in the edge cache. Conse-
quently, the benefits offered by our proposals are expected to
diminish. For example, cache hit ratio decreases significantly
when there are 1000 contents, as observed in Fig. 9a. For a
larger video catalog in the order of thousands (e.g., the movie
catalog of NetFlix9), we expect that the video providers or
network providers implement popularity-based caching or pre-
caching to increase the chances of cache hits and to exploit
the cached content for higher user satisfaction. Despite the
diminishing benefits, our proposed schemes can still offer
some performance improvements over CLIENT in terms of
video bitrates as shown in Fig. 9b and better utilization of
the backhaul link as shown in Fig. 9c. In this setting, all
schemes maintain almost a smooth playout without buffer
stalls. However, for lower backhaul capacities, e.g., Γbh = 8

9https://www.statista.com/statistics/563381/netflix-available-movies-by-
country-in-europe/
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Fig. 9. Impact of number of videos, synthetic video data, Γbh = 20 Mbps.

Mbps, we also observe improvement in stall ratio. This perfor-
mance improvement is due to the AP’s resource management
approach that takes the clients’ states, e.g., buffer levels, into
account. Comparing BUFF and CPH variants, we observe the
same trend as in the earlier scenarios: BUFF suffers from lower
cache hits and video quality, but at the same time offers few
buffer stalls.

C. Discussion on a Practical System

Now, we discuss briefly the implementation issues of
EdgeDASH. An AP can calculate the utilities in (5) using
the following parameters: i) available bitrates of the requested
video, ii) current client buffer level, iii) expected buffer level
of a client after the delivery of the current chunk, and iv)
minimum target buffer level. The AP and clients can use the
following SAND messages encapsulated in HTTP header to
convey this information: AcceptedAlternatives, DeliveredAlter-
native, and ClientQoS [3]. Using AcceptedAlternatives, the
client can notify the AP about the other quality levels it will
accept. Using DeliveredAlternative, the AP can notify the
client if it delivers an alternative rather than the requested
quality. Using ClientQoS, the client can inform the AP about
its buffer level. Using DeliveryBoostRequest, the client can re-
quest the network (DANE) to assist it and ask for buffer boost.
Finally, DANE can respond with a DeliveryBoostResponse as
a response to DeliveryBoostRequest.

A clear limitation of EdgeDASH is that it is applicable only
to HTTP traffic in which an AP can extract the contents of a
video request message for the operation of EdgeDASH. Given
that an increasing fraction of Internet traffic is encrypted, it
is important to design solutions that can work for encrypted
content, as appears in [23] and [24] as examples. However,
we leave this aspect to a future work since network assistance
for encrypted content requires completely a new approach.

Another possible direction is the design of cache manage-
ment policies; a content-aware cache admission and replace-
ment scheme can exploit the popularity of chunks and also
use the information from clients, e.g., AnticipatedRequests
message type defined in SAND [3] which lets a DASH client
to inform a DANE about the chunks the client might request
next. Since the CPs such as YouTube collect user statistics,
they can predict the popularity of each chunk and quality level.
While such statistics are not publicly available, CPs would also

benefit from sharing this information with network-assistance
elements. Therefore, popularity values can be fed from the CP
to the network providers.

IX. CONCLUSIONS & FUTURE WORK

Since video streaming is a dominant traffic accounting for a
big share of network load, it is paramount to provide solutions
to improve the performance of video traffic as well as to
leverage some state-of-the-art approaches for decreasing the
burden on the network. With this goal in mind, we propose
network-side quality and resource assignment solutions run-
ning at a WiFi AP. Our proposal takes advantage of the cached
contents to both decrease the congestion in a bottleneck link
and to improve video streaming performance, e.g., by offering
higher video bitrate or lower buffer stalls. Our simulations
show the following: by a moderate adaptation of the clients’
quality requests (e.g., offering a few quality levels higher or
lower than the requested), a WiFi AP can improve cache hits
while decreasing buffer stalls and increasing video bitrates.
Moreover, an AP can allocate its downlink airtime considering
the statistics of video clients, e.g., buffer levels. As future
work, we plan to evaluate our schemes on a prototype using
the state-of-the-art client driven DASH players to understand
better the behavior of EdgeDASH in interaction with TCP and
changes in the wireless channel.
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