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= Massive growth of wireless data traffic [1]
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= Trend towards ultra-dense networks RorMant 735
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= Radio spectrum becomes the bottleneck 0 0- E T

=  Wide deployment of flexible software defined radios (SDR)

= |dea: more flexible usage of radio spectrum in time, space, and

frequency dimensions = increase in spectral efficiency

= Problem:

= Flexibility in spectrum allocation comes with
cost of increased complexity of spectrum '
monitoring by enforcement authorities

Slide 2 [1] “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Upaaie, cuito-cuzi , cuir.
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Problem Statement

= |dentifying the unauthorized transmitters is at interest of spectrum
enforcement authorities to ensure that spectrum is used as intended
by the legitimate users.

= But, a scalable, efficient, and highly-accurate solution is needed.

" System model. o S W W e
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= Crowdsourced spectrum sensing, |
= COTS sensing devices reporting their “53225.32 [sciiﬁi'ﬂﬁgJ qoomaly)

measured total Received Signal
Strength (RSS) values to central entity,

= Information is centrally fused &
analyzed for localization of unknown
number of transmitters.

spectrum sensing data
e.g., (x1,¥1, RSS;1)

(x2,v2)

(x3,Y3)
Oaov1) Sensors

Proposed system model
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Proposed Approach - DeepTxFinder

= We leverage deep learning to identify & localize ||
transmitters - similar to image recognition

= But not so easy as we have many sources of
uncertainty in the operation environment, i.e.:

= Number of transmitters,
= Transmission power levels, i
= Insufficient space separation between transmitters, |,
= Channel conditions (e.g., level of Shadowing)

200

= Scalable solution: tiling-based approach
reduces computational complexity
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DeepTxFinder Architecture

= Two step approach:
First CNN is used to detect the number of transmitters
= Second CNN estimates actual 2D locations of that many transmitters
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DeepTxFinder Archltecture W)

Tiling-based approach to achieve scalability:

= Area of interest is divided into smaller uniform tiles,
= Run prediction on each tile.

= Fuse the individual predictions from multiple tiles using majority voting to
derive final set of predicted locations

@ Full sensing @Run prediction on
data each tile

\@ Data fusion

g (clustering)

—» TX locations
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DeepTxFinder Architecture (ll)

= Example output of prediction in large environments:

Sensing matrix
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Performance Analysis

Custom system-level simulator:

= Python using ML libraries (TF, Keras)
= 900 MHz, Keenan-Motley pathloss, spatially-correlated Shadowing

) N4

Model training
= 10° samples: 70% for training 30% for testing (validation)

Baseline: SPLOT, 2017 [1]

= Breaks down multiple-transmitter-localization to several single-transmitter-
localization problems

= Three variants with different threshold value r used for finding the local maximas

Metrics:
= Localization error, cardinality error, detection probability, false alarm, exec. time

[1] M. Khaledi et al.: "Simultaneous Power-Based Localizationof Transmitters forCrowdsourced SpectrumMonitoring”, MobiCom, 2017
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Performance Analysis (II)

= |nvestigated scenarios:
= S1=no shadowing & known Ptx:

= Simplest case where the channel pathloss is fully deterministic, i.e.,
depends exclusively on the distance (no Shadowing)

= Transmitter power is constant & known for all transmitters
= S2 =shadowing & known Ptx:

= More realistic case where the signal propagation experiences
shadowing (where o= 5 dB)

= Transmitter power is constant & known for all transmitters
= S3 =shadowing & unknown Ptx:

= Most challenging case: channel with shadowing (with o =5 dB) and
the transmitter power is variable, i.e., random between 0-10 dBm
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= Scenario I: no shadowing and constant (known) TX power

= sparse sensing is feasible: both schemes converge to acceptable
localization errors (few meters) with only 1-2% sensor density

= SPLOT with r=10 offers best performance

t DeepTxFinder
SPLOT (r=1m)
- SPLOT (r=2m)
== SPLOT (r=10m)
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(b) Detection probability.
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(c) Cardinality error.

1
~

TKN

DeepTXF:




Localization error
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= Scenario IlI: shadowing and constant (known) TX power
= SPLOT: higher localization error but also higher detection probability

perf. of DeepTxFinder remains same showing its robustness against
different environment conditions - feasibility in wide range of settings
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(b) Detection probability.
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(c) Cardinality error.
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Results (III)

= Scenario lll: shadowing and variable (unknown) TX power

= DeepTxFinder maintains a lower detection probability if the transmitter
power is randomly distributed between 0-10 dBm: converges to 90%
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Results (IV)

= Execution performance DeepTxFinder
= for different field sizes on state-of-the-art machines
= speedup with GPU is clearly visible
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Conclusions

= |ncrease in flexibility of spectrum usage - need for identifying the sources of
transmissions & localizing them to prevent illegitimate spectrum use

= Crowdsensing the spectrum is promising but requires scalable solutions
= Focus is on transmitter localization under sparse spectrum sensing

= DeepTxFinder uses deep learning to localize unknown number of
transmitters:

= Robust to uncertainty in TX power & channel propagation (Shadowing)

= Provides high detection accuracy even under sparse sensing: = 1-2%
sensor density is sufficient

= Low false alarm rate - essential to avoid waste of expert labor (e.qg.,
officers at the regulatory body)
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