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Abstract—Cross-Technology Communication (CTC) allows
direct message exchange between devices with different (i.e.,
incompatible) wireless communication standards. CTC is partic-
ularly suitable to allow for coordination between heterogeneous
devices sharing the same spectrum, as in the Internet of Things.
Existing research on CTC has focused on enabling communi-
cations for diverse technologies with the goal of achieving a
high throughput. However, it did not address how to establish
a link suitable for CTC, which is necessary for successful data
exchange. This article specifically addresses such a problem
by introducing CTC-CEM (CTC Channel Establishment with
Multiple nodes), a scheme to establish a CTC channel involving
the use of multiple nodes in a network. CTC-CEM employs
duty-cycling and leverages network density to reduce energy
consumption, while keeping a low discovery latency. In particu-
lar, CTC-CEM defines different discovery protocols to reliably
detect co-located networks. Moreover, it addresses the selection
of multiple CTC nodes as a set cover problem, and includes
an optimization technique based on dynamic programming to
balance the energy consumption in the whole network. Extensive
simulations show that CTC-CEM effectively distributes the
energy consumption in the network, increasing fairness by 97%
after optimization. Furthermore, the latency in establishing a
channel with CTC-CEM is two orders of magnitude lower than
that for device discovery in duty-cycled networks.

Index Terms—Cross-technology communication, channel es-
tablishment, network discovery, energy efficiency

I. INTRODUCTION

Cross-Technology Communication (CTC) refers to the
direct exchange of messages between devices with different
(i.e., incompatible) wireless communication standards. For
instance, CTC enables a device with a WiFi interface to
send (receive) messages to (from) a device with a Bluetooth
transceiver, without the need for additional hardware [1].
CTC is particularly suitable to allow for coordination be-
tween heterogeneous devices sharing the same spectrum,
particularly, in the unlicensed ISM bands. This is especially
important in the Internet of Things, wherein a large number
of devices is densely deployed in a certain geographical area.
In such scenarios, devices could leverage CTC to effectively
mitigate cross-technology interference and increase perfor-
mance as well as reliability.

CTC is achieved by operating at either the physical layer
or the packet level. Solutions of the first type emulate signals
of another technology [2, 3]. Packet-level schemes, instead,

leverage capabilities that are common to different technolo-
gies (such as frequency, phase and amplitude sensing) to
encode messages [1, 4–7]. In any case, CTC requires estab-
lishing a logical link – usually called channel – in the first
place. However, existing research on CTC has rather focused
on enabling communications for diverse technologies (e.g.,
WiFi-ZigBee and WiFi-Bluetooth) with the goal of achieving
a high throughput (Section II). In doing so, most solutions
rely on the fact that a CTC channel is already available,
without providing means to establish such. Moreover, they
only employ a single designated node in each network (e.g.,
an access point or coordinator) to realize CTC, resulting in
limited coverage and possible traffic bottlenecks.

Indeed, establishing a CTC channel entails two key chal-
lenges. First, a given network should quickly discover the
presence of others using a different technology. This also
requires designing a scheme that is robust against message
losses and has a limited overhead, especially for dynamic
environments demanding continuous network discovery. Sec-
ond, nodes incur a higher energy expenditure due to CTC, es-
pecially coordinators that need to handle traffic belonging to
the whole network. Leveraging multiple devices balances the
energy expenditure across nodes in the network; moreover,
it increases efficiency as devices can communicate directly
instead of through coordinators. However, extending CTC to
more than one node per network requires careful coordination
for selecting devices and scheduling their transmissions.

We specifically address these challenges by introduc-
ing CTC-CEM (CTC Channel Establishment with Multiple
nodes), a scheme to establish a CTC channel involving the
use of multiple nodes in a network (Section III). CTC-CEM is
transparent, namely, it can be applied to a variety of CTC
protocols, including C-Morse [4] and DopplerFi [5]. More-
over, CTC-CEM employs duty-cycling and leverages network
density to reduce energy consumption, while keeping a low
discovery latency. In particular, CTC-CEM defines discov-
ery protocols to reliably discover networks using different
communication technologies under the presence of a duty
cycle (Section IV). Moreover, it addresses the selection of
multiple CTC nodes as a set cover problem, and includes
an optimization technique based on dynamic programming
to balance the energy consumption in the whole network
(Section V). Extensive simulations show that CTC-CEM ef-
fectively distributes the energy consumption in the network,978-1-7281-7374-0/20/$31.00 ©2020 IEEE
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increasing fairness by 97% after optimization. Furthermore,
the latency in establishing a channel with CTC-CEM is two
orders of magnitude lower than that for device discovery in
duty-cycled networks (Section VI).

II. RELATED WORK

Prior work in the literature has introduced several ap-
proaches for CTC at both the physical layer and the packet
level. Among those of the first class, WEBee [2] proposes
parallel CTC transmissions on different frequency bands
by emulating ZigBee signals in WiFi commodity devices.
BlueBee [3] addresses CTC between Bluetooth and ZigBee.
Packet-level CTC has also been extensively addressed. C-
Morse [4] encodes messages through the packet length as a
Morse code. Specifically, a small packet length represents
a dot, while a larger packet or two consecutive packets
represent a dash. DopplerFi [5] introduces artificial Doppler
shifts to encode CTC messages in frequency so as to en-
able direct communication between BLE and WiFi devices.
ZigFi [7] presents a ZigBee to WiFi communication scheme
that uses channel state information to decode CTC messages.
The same work also proposes an initial protocol to establish
communication parameters, such as transmission power and
packet length; however, the network discovery problem is not
addressed. In contrast to the prior work in CTC, we address
network discovery, the establishment of the CTC channel and
propose the use of multiple nodes to carry CTC messages.

Device discovery and wireless channel establishment have
also been addressed, however, in other scenarios – primarily
in the literature about wireless sensors and opportunistic net-
works [8, 9]. In this context, nodes perform continuous device
discovery while using a duty-cycle to save energy. There
are two main approaches for opportunistic discovery: prob-
abilistic and deterministic. The family of birthday protocols
proposed by McGlynn et al. [10] belong to the first group:
time is divided into periods and each node independently and
randomly chooses slots in the period to transmit or listen.
Karowski et al. [11] use linear programming optimization
for asynchronous multi-channel neighbor discovery.

Deterministic protocols provide a latency bound: nodes
are able to discover each other in a finite amount of time.
Zheng et al. [12] provide lower bounds for the discovery
problem by proposing an asynchronous wakeup scheduling
based on block design. Later, Meng et al. [13] introduce
Diff-codes to prove that such bounds can be further lowered
by considering non-aligned slots. Different from traditional
approaches, Chen et al. [14] do not assume slotted time. Wei
et al. [15] propose two types of time slots with different active
lengths to achieve better energy savings. However, these ap-
proaches target non-CTC applications and leverage device-to-
device communication. In contrast, CTC-CEM uses all nodes
to achieve a lower discovery latency and to better balance
energy consumption of nodes in heterogeneous networks.

III. SYSTEM MODEL

We consider two wireless networks with overlapping cov-
erage areas, namely, some nodes in each network sense

Fig. 1: The different phases in CTC-CEM.

transmissions from the nodes in the other network, generally
called foreign network in the literature. Each network has
a controller managing the use of network resources. For
illustration purposes, the rest of the discussion assumes a
WiFi network co-located with a ZigBee network; accordingly,
the controllers are represented by a WiFi access point (AP)
and a ZigBee coordinator (ZC). Moreover, we address the
general case where the controllers cannot communicate with
each other directly; instead, other nodes in the network must
be used for CTC. The two networks operate at the same
or partially overlapping spectrum, resulting in co-channel
interference. Networks establish a CTC channel, for instance,
to mitigate such interference; therefore, they perform network
discovery upon detecting frequent packet drops. We assume
that both networks run the same CTC scheme and use special
CTC control frames: synchronization (SYN) messages and
ACK messages (i.e., frames without payload) acknowledging
them. Moreover, each network controller divides nodes into
two types: those transmitting network discovery messages;
and those listening to network discovery messages from the
foreign network. We refer to nodes of these two types as
SYN transmitters and SYN receivers, respectively, and to all
of them as SYN nodes.

Before establishing the CTC channel, a network becomes
aware of the other one through a Cross-Technology Inter-
ference (CTI) detection mechanism, for instance, one of
those in [16–19]. Then, the channel establishment takes place
through CTC-CEM in three phases: (i) network discovery
(Section IV), (ii) cross-network neighbor discovery (Section
V-A), and (iii) energy optimization (Section V-C). These
phases are illustrated in Fig. 1.

IV. FOREIGN NETWORK DISCOVERY

As mentioned in Section III, we assume that both networks
run the same CTC scheme. However, the networks do not
have any knowledge on the characteristics of the other one,
for instance, its communication technology. Therefore, they
start a foreign network discovery process. To this end, the
controller defines a duty-cycle consisting of two types of
time slots: active slots during which nodes perform network
discovery and sleeping slots during which nodes either save
energy or operate as usual for their in-technology commu-
nication. There are two types of active slots: a Tx slot for
SYN transmitters and a Rx slot for SYN receivers.

Network discovery is complete after the two networks suc-
cessfully exchange network discovery messages. For this to
happen, the following two conditions must hold: (i) an active
Tx slot of a network must overlap with an active Rx slot of
the other network long enough for the network discovery



message to be decoded, and (ii) at least one SYN receiver
must be in the transmission range of at least one SYN trans-
mitter. However, networks likely start the network discovery
process at different times as the impact of interference on
each network is generally asymmetric. Moreover, the location
or availability of nodes might change after the CTC channel
establishment. Therefore, CTC-CEM must run periodically
to address these issues and ensure efficient operations. For
this reason, we propose two different network discovery
schemes: an initial network discovery and a periodic network
discovery. We introduce these next.

A. Initial network discovery

Since networks may start the initial network discovery
phase at completely different times, it is necessary to use
a neighbor discovery scheme with a low duty-cycle to save
energy while still guaranteeing network discovery. Particu-
larly, we leverage existing deterministic neighbor discovery
schemes (such as Diff-codes [13] or the solution in [12]) that
guarantee overlapping active slots in a finite amount of time.
In the following, we describe how to apply such schemes in
the considered CTC scenario.

Since the controllers of each network do not know which
nodes are in the cross-network transmission range, they select
different random sets of nodes as SYN transmitters and SYN
receivers at the beginning of each active slot. This guarantees
the detection of discovery messages. Such messages include
a technology-specific code, referred to as SYN code, to
identify the technology type of the network. Such codes
are defined by the CTC scheme. For instance, CMorse [4]
defines a SYN code as a certain sequence of dots and dashes.
Instead, DopplerFi [5] employs different values of artificial
Doppler shifts. A network determines the foreign technology
by decoding the received SYN code.

As Fig. 2a shows, an active Tx slot (T ) is composed by
two portions (i.e., Tx sub-slots): the first one, with a duration
of TS , for sending the SYN code; the second one, with a
duration of TA, for listening to ACKs and the SYN code from
the foreign network. Clearly, T = TS + TA and generally
TS < TA. The selected set of SYN receivers are constantly
listening for foreign SYN codes during an active Rx slot. The
exact duration of Tx and Rx slots is defined by the applied
CTC scheme, as SYN codes are represented accordingly.
During the initial discovery phase, both networks run Tx
and Rx slots in parallel with different sets of nodes. The
process continues until a SYN code of the foreign network
is detected. The energy consumption is distributed among the
network by selecting different sets of SYN transmitters and
receivers for each slot.

The Rx slot is longer than the Tx sub-slot, so that the SYN
receivers of the foreign network can detect the SYN message.
Let us denote the length of the Rx slot by kT , where k > 1
defines the lower bound for neighbor discovery. We set k = 2
to keep the neighbor discovery latency bounded by two Tx
sub-slots. As a result, an active Tx slot (composed by two
Tx sub-slots) and an active Rx slot have the same length.
Note that slots must have the same length to ensure overlaps

under deterministic neighbor discovery approaches, such as
those based on block designs [12].

The two networks perform a three-way handshake to
establish the CTC channel. Let us consider a sample scenario
of ZigBee and WiFi networks. For simplicity, we consider
only the Tx slots of the ZigBee network and the Rx slots
of the WiFi network. The following details the three-way
handshake in the considered scenario.

1) The ZigBee SYN code is detected1 by some WiFi SYN
receivers. These WiFi nodes immediately inform the
WiFi AP about the received code.

2) The WiFi AP synchronizes all nodes to send an ACK
followed by the SYN code corresponding to the network
technology type. During this second step, the ZigBee
nodes that sent the detected code are in listening mode
waiting for the WiFi ACK and SYN code. After these
ZigBee nodes detect the WiFi SYN code, they inform
the ZC about it.

3) The ZC then synchronizes all nodes to send an ACK to
the WiFi network.

Let us now analyze the discovery latency in this scenario.
First of all, we note that network discovery can be completed
only if an active Tx and Rx slots overlap and at least one
SYN receiver is in transmission range of at least one SYN
transmitter of the foreign network. However, it is possible that
two active slots overlap for insufficient time, thus the SYN
code is not successfully received. Recall that an active Tx slot
is composed by two Tx sub-slots. Consider also, for instance,
the ZigBee Tx slots and the WiFi Rx slots shown in Fig. 2a.
Since networks are unsynchronized in their active slots, four
different time shifts between these Rx and Tx slots can occur
in this considered setting. These cases are as follows.

a) The WiFi Rx slot starts before the first ZigBee Tx sub-
slot and the WiFi active Rx slot ends before the first
ZigBee SYN slot. As a result, the WiFi Rx slot cannot
detect the ZigBee SYN code.

b) The Rx slot starts before the first Tx sub-slot. However,
WiFi nodes are still able to detect the first SYN code.

c) An Rx slot starts after the first SYN code, which allows
to detect the second SYN code entirely.

d) An Rx slot starts after the second Tx sub-slot, which
makes the nodes miss all SYN codes.

Since active and sleeping slots have the same duration,
the time shift is constant. As a result, networks will never
discover each other in Case a) and Case d). Therefore, we
extend the active Rx slots as shown in Fig. 2b: if the ith

active slot is allocated to Rx (Rxi), then slots i − 1 and
i+1 must also be active. As a result, networks always meet
at a partially overlapping active slot if the SYN receivers
are in coverage area of the SYN transmitters. Consequently,
the discovery latency is entirely determined by the employed
neighbor discovery approach.

1This happens as soon as a ZigBee Tx slot and a WiFi Rx slot overlap.



(a)

(b)
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Fig. 2: (a) Sample time shifts between Tx slots of the ZigBee network and Rx slots of the WiFi network, (b) extension of
active Rx slots and (c) general discovery latency.

B. Periodic network discovery

CTC-CEM must run periodically to address network dy-
namics due to either mobility or node failures. However,
running a neighbor discovery scheme as described in Section
IV-A all the time is not efficient. For this reason, we establish
a periodic schedule at which point the two networks start
running a periodic network discovery process. Specifically,
we introduce CTC-PND (CTC Periodic Network Discovery),
an asynchronous discovery approach employing all nodes
in the networks and leveraging different sets of nodes in
each active slot, as in the initial network discovery approach
presented above. However, nodes send and receive SYN
codes without going to a sleep state until a certain condition
is met for the periodic network discovery. Since the two
networks have already agreed on a schedule, a low duty-
cycle is no longer needed.

Let us calculate the lower discovery bound for CTC-PND.
Consider the scheme in Fig. 2c, wherein Tx slots have a
duration of T = TS + TA with TS < TA and the Rx slot
lasts k times longer than the Tx slot (kT ). Let tj be the
time shift measured with respect to the end of the jth Tx
slot: tj = Rj − Tj where Rj and Tj are the ends of the jth

Rx and Tx slots, respectively, as shown in Fig. 2c. In this
scenario, the condition for the jth SYN code to be detected
depends on whether tj is negative or positive and is given
by:

− TA ≤ tj < 0 or 0 ≤ tj ≤ T (k − 1), (1)

respectively. Accordingly, the discovery latency is defined by:

DL =


⌈
||tj |−TA|
T (k−1)

⌉
if tj < 0

⌈
tj

T (k−1)

⌉
if tj ≥ 0

(2)

This equation represents the difference between the time
shift and the lower bound in the detection condition (||t1| −
TA| or |t1 − 0|), as given in Eq. (1), divided by the amount
that this difference is shortened in each slot (T (k− 1)). It is
clear from Eq. (2) that for small values of k (i.e., 1 < k < 2)
the discovery latency increases, while for k ≥ 2 the lower
bound is always equal to two slots. Clearly, k > 1, otherwise
the discovery condition is never met unless k = 1 and the
slots are completely aligned.

CTC-PND follows the same scheme as in Fig. 2c, where
k = 2. Hence, the condition for the jth SYN code to be
detected is −TA ≤ tj < 0, or 0 ≤ tj ≤ T , and, according to
Eq. (2), the maximum discovery latency is two slots.

Nevertheless, this lower bound applies to a scenario with
a pair of SYN transmitter and receiver, within their transmis-
sion ranges, continuously running Tx and Rx slots. However,
networks do not know yet which nodes are in the cross-
network transmission range. Moreover, the discussed lower
bound is achieved if all nodes are scheduled with Tx and Rx
slots, at the cost of a high energy consumption. Hence, the
networks continuously listen and transmit while distributing
the energy between all the nodes by allowing each con-
troller node to randomly choose the nodes for receiving and
transmitting SYN codes in such a way that each Tx and
Rx slot is run by a different set of nodes. We show in
Section VI-B that such an approach is more efficient than
using a traditional deterministic neighbor discovery protocol
in a periodic network discovery process.

C. Implementation-related considerations

We use multiple nodes to transmit a CTC message in
the same active time-slot to increase the probability of
successful reception of the CTC message by at least one
node in the foreign-technology network. Depending on the



implementation of the underlying CTC scheme, the nodes
may transmit CTC messages in different ways: sequentially in
the case of emulation-based CTC schemes, where the entire
CTC message is emulated and contained in a single frame;
or exactly at the same time in the case of Packet-level CTC
schemes, where multiple frames are used to encode CTC
message using parameters (such as frame duration, transmis-
sion power and so on). In either case, time synchronization
among nodes generating CTC messages is required. Note that
the most widely used communication technologies maintain a
time synchronization between the nodes in the network. For
instance, the time synchronization function (TSF) in WiFi
keeps the timers for all stations in the same basic service
set synchronized, i.e., all WiFi stations set their local TSF
time to that announced by the AP. Existing works in the
literature, such as [20, 21], have shown that it is possible
to synchronize actions performed by WiFi nodes based on
their TSF timers. Furthermore, forcing multiple nodes to
transmit at exactly the same time requires deactivating the
physical and virtual carrier-sensing mechanisms that make
the nodes backoff in case some activity on the channel is
detected. This is actually possible in at least some off-the-
shelf WiFi chipsets. Therefore, it is feasible to implement
the proposed CTC channel establishment scheme on top of
existing wireless standards, particularly, WiFi.

V. NEIGHBOR DISCOVERY AND ENERGY OPTIMIZATION

At this stage, each network is aware of the existence
of the other network and its technology type. However,
the controllers do not know how many foreign nodes are
in the coverage range and which local nodes are able to
reach foreign nodes. This information is crucial to select
CTC transmitters and receivers for ensuring reception of
CTC messages. Moreover, such a selection should reduce
the energy consumption in the whole network. These aspects
are detailed next.

A. Cross-network neighbor discovery

The second phase in CTC-CEM (recall Figure 1) is cross-
network neighbor discovery. The controller initiates such a
phase, then each node broadcasts its identity once and waits
for ACK messages from the foreign nodes. In this case,
all nodes send a CTC control frame sequentially. Consider
again our reference ZigBee-WiFi scenario. Since the ZigBee
nodes sent the last ACK during the foreign network discovery
phase, now the WiFi network needs to identify its nodes.
While one WiFi node sends a CTC control frame, the
remaining nodes sense to detect ACK messages from the
ZigBee network. After receiving an ACK for its message, the
node knows that its transmission was successfully received
by the ZigBee network. Therefore, this node is a candidate
to carry CTC transmissions. The AP is in charge of creating
a TX-CTC table with all the local nodes that are capable of
transmitting CTC messages.

On the other hand, the ZigBee network must identify the
nodes that are able to receive the WiFi transmissions. For this
purpose, the ZC needs to create an RX-CTC table with all the

TABLE I: Sample RX-CTC table.

RX-CTC table
Z1 = {W1, W3, W4, W5}
Z2 = {W4}
Z3 = {W1, W2}
Z4 = { }

WiFi nodes that each ZigBee node senses. To this end, every
time a ZigBee node reports a successful CTC transmission
by WiFi nodes, the ZC assigns an ID to the WiFi node and
adds it to the local node entry in the RX-CTC table. Note
that the ID that the ZC assigns to the WiFi nodes is freely
chosen. Hence, it is not necessary to include any kind of ID
for the nodes in the CTC control frames. Moreover, since
nodes send control frames only once during this phase, they
cannot be counted more than once. Table I shows a sample
RX-CTC table. In this example, ZigBee node Z2 can only
sense transmissions coming from WiFi node W4, while node
Z4 is not reachable by any WiFi node.

Both TX-CTC and RX-CTC tables are created locally and
it is not necessary to share them with the other network.
While nodes in TX-CTC are immediately considered as CTC
transmitters, the RX-CTC table cannot be directly used to
determine CTC receivers since it is not possible for a network
to know which nodes will carry a CTC message in the foreign
network. Instead, the controller needs to calculate sets of
nodes that cover all foreign nodes to ensure that a CTC
message is received by at least one local node. The example
in Table I illustrates that no node covers all foreign nodes.
However, the set {Z1, Z3} forms a set cover: if these nodes
sense simultaneously, the controller guarantees that all CTC
transmissions from the WiFi network are received.

The set cover problem is a well-known NP-complete
problem [22–24]. CTC-CEM implements a typical set cover
algorithm to find the set covers of CTC receivers. How-
ever, we propose a new heuristic to achieve fair energy
consumption among the involved nodes. Next, we present
our approach to CTC receiver selection.

B. Set cover-based CTC receiver selection

Now, each controller knows which of its local nodes sense
which foreign nodes. With this information, a controller
needs to determine the set of nodes that are able to act as
CTC receivers at a particular time. We abstract our problem
as a weighted set cover problem, since using always the
same nodes as CTC receivers leads to an unfair energy
consumption at these CTC receivers. In contrast to static
node weights [25], we propose using dynamic weights (DWs)
that are increased every time a node is included in a set
cover. This allows to distribute all nodes in the set covers
instead of including always the same. The fair distribution of
nodes in the set covers is essential to ensure that no node is
exhausted by high energy consumption. We discuss next the
implementation of DWs.

We propose CTC-set covers in Alg. 1 to generate set covers
of nodes such that all possible transmissions from the foreign
network are sensed. The input parameters of this algorithm



Algorithm 1: CTC-set covers
Init : E ← all foreign nodes, N ← all local nodes

U ← {e|e ∈ E} iff ∃n ∈
N s.t. e is covered by n n← maxn |U ∩ n|
s← ∅, C ← ∅, w(n)← 0 ∀n ∈ N

1 Procedure SETCOVERING(U ,N , n, s, C, w)
2 s.add(n), N .remove(n);
3 foreach elements covered by n do
4 U .remove(elements)

5 if U is empty
6 s← REMOVEREDUNDANT(s);
7 if s is not in C then C.append(s);
8 foreach m in s do w(m)← w(m) + 1;
9 s← ∅;

10 return C
11 else
12 sort N by w(ni)

|U∩ni|
∀ni ∈ N ;

13 foreach n′ in N do
14 SETCOVERING(U ,N , n′, s, C, w);

15 s← ∅;
16 return C

are a list of nodes that have not yet been included in a set
cover (N ), the universe (U) representing all foreign nodes
that are sensed by at least one local node, a node n to be
included in the current set cover s, the current list of all set
covers (C), and the current weights w of all nodes. We first
set the weights for all nodes to zero. Note that n is the node
achieving the maximum intersection with the universe U .

This recursive algorithm starts by adding node n to the set
s and removing it from the list of available nodes (line 2).
In line 4, all elements covered by n are removed from U .
Then, the base case is checked: if U is empty, i.e., all foreign
nodes are covered. Next, REMOVEREDUNDANT removes all
possible redundant nodes in the generated set cover using
the algorithm in [22]. REMOVEREDUNDANT iterates over all
nodes in the set. In case all elements covered by a node are
also covered by the rest of the nodes, such node is considered
redundant and, thus, removed from the set cover. It is also
necessary to verify if the set cover s is not already in the set
of set covers. This verification occurs in line 7 after which
s is appended to C. The next step is to increase the weight
of the nodes included in the set cover (line 8). Moreover, s
is set to an empty set and C is returned. However, if there
are still nodes in U that need to be covered, the remaining
nodes (N ) are sorted according to:

H =
w(ni)

|U ∩ ni|
. (3)

This heuristic uses the nodes’ current weight and the length of
the intersection between the elements covered by each node
and the universe U . As a result, the nodes with the smallest
weight and largest intersection length are chosen first. The
last step in CTC-set covers is to recurse over SETCOVERING
with node (n′) in line 14. After finding the set covers, the
controller node can set the nodes that belong to any set cover
in listening mode to listen to foreign CTC transmissions.

Note that the procedure in Alg. 1 is a recursive approach to
the exact set cover enumeration problem [22] with a heuristic
that achieves fair distribution of nodes in the set covers. The
correctness of CTC-set covers is proved similarly as in typical
algorithms for finding set covers; thus, we omit it here due
to limited space.

C. Energy optimization

After the set covers have been generated, the controller
needs to determine which of them to use, as using all set
covers is not always the most efficient solution in terms of
fair energy balance of the nodes. Therefore, the controller
aims at using given nodes approximately the same number
of times.

Let C be the set of set covers (s) discovered in the previous
step, and wi be the number of times a node ni appears in a
subset. Our goal is to choose some subsets of C such that
wi ≈ wk ∀i, k ∈ N . Specifically, we define the energy
optimization problem as minimizing the sum of the difference
of w between every pair of nodes, as shown in Eq. (4).
Let us denote the sum of differences by G which represents
the balance of workload among the local nodes. We define
the objective function of our energy optimization problem as
follows:

min{G} = min

|N |−1∑
i=1

|N |∑
k=i+1

|wi − wk|

 . (4)

Let S be a schedule composed by all the set covers gener-
ated during the cross-network neighbor discovery phase. That
is, S = C. However, the schedule S also defines a policy for
using the set covers cyclically. It is possible to find another
schedule S′ such that S′ ⊆ S and G(S′) ≤ G(S) for all
iterations. Particularly, we propose the dynamic programming
approach presented in Alg. 2.

Alg. 2 uses a greedy heuristic to always include the set
cover that minimizes the sum in Eq. (4). The dynamic
programming algorithm creates an improved schedule S′ by
adding the set covers that minimize G until all nodes in N
are covered. Specifically, the algorithm increases the weights
(w) of the nodes every time they are included in the schedule
S′. Then, it uses two dictionaries (N and Z) to store the
weight difference between every pair of nodes. N contains
an entry for each node in N and a node nj is included in
the entry of another node ni if w(nj) > w(ni). On the other
hand, Z also contains an entry for each node in N . In this
dictionary, nodes are included in another node’s entry only
if their weights are equal, i.e., w(nj) = w(ni). With this
data structure, Eq. (5) can be used every time one needs to
calculate the contribution to G of adding a new set cover s to
S′. There, Gk+1 is the sum G after including a new set while
Gk is the sum in the previous iteration of the algorithm and
nl is the number of nodes, i.e., nl = |N |. Here, |s| denotes
the number of nodes in the set cover s while m is the sum of
number of elements in the entry of node n in the dictionary



Algorithm 2: Find improved schedule
Input : C: List of current set covers; N : List of nodes
Output : S′: Improved schedule
Init : S′ ← ∅, Gk ← 0, nl ← |N|, w(n)←

0, N(n)← ∅, Z(n)← N ∀n ∈ N
1 while N 6= ∅
2 Gk+1(s)← 0 ∀s ∈ C
3 foreach s ∈ C do

4 m←
|s|∑
i=0

|N(i)|

5 Gk+1(s)← Gk + nl|s| − 2m− |s|
6 s′ ← Gk+1.argmin(), Gk ← Gk+1(s

′)
7 S′.add(s′), C.remove(s′)
8 foreach n ∈ s′ do
9 N .remove(n)

10 foreach k1 ∈ Z(n) do
11 N(k1).add(n), Z(k1).remove(n)

12 Z(n)← ∅, w(n)← w(n) + 1
13 foreach k2 ∈ N(n) do
14 if w(n) == w(k2)
15 Z(n).add(k2) and Z(k2).add(n)
16 N(n).remove(k2)

17 return S′

N for all n ∈ s, i.e. m =
∑

n∈s |N(n)|. We express Gk+1

as follows:

Gk+1 = Gk + nl|s| − 2m− |s|. (5)

Alg. 2 initializes the schedule S′ to an empty set, Gk = 0
and nl = |N |; the weights of all nodes to zero, all entries of
N as empty sets, all entries of Z asN , because all nodes have
weight zero. Then, a while loop is used to run the algorithm
until N is empty (line 1). Gk+1 is initialized as an array that
contains the result of G if a set s is included in S′ (line 2).
G is then evaluated for each set in C by means of Eq. (5)
(lines 3-5). The set that produces the smallest sum is added to
the schedule S′ and removed from C (lines 6-7). At this point,
N and Z must be updated. All nodes that are included in s′

are removed from N (line 9). Afterwards, before increasing
the weight of n, all nodes that has equal weight as n are
removed from the related lists in Z and n is added to their
lists in N (lines 10-11). The weight of n is increased by
one (line 12); if another node (k2) has the same weight as
n, that node is removed from N(n) and k2 and n are added
to the related lists in Z (lines 13–16). Finally, the algorithm
returns the improved schedule S′ (line 17). Alg. 2 runs in
O(|N ||C| + |N |3). If |C| ≤ |N | then the time complexity
becomes O(|N |3).

The energy optimization phase should run every time the
set covers change. For this reason, the periodic network
discovery approach presented in Section IV-B, followed by
the other phases, must run regularly as shown in Fig. 1.
Periodic operation allows keeping the set covers updated to
avoid the use of CTC receivers that cannot sense any foreign
node any more.

D. Latency analysis

The latency introduced by phase 1 was already discussed
in Section IV. In addition to this latency, phases 2 and 3
also require time to be executed, thus, they contribute to
the total latency of CTC-CEM. Let us first analyze the
number of messages sent during phase 2. The number of
messages clearly depends on the number of nodes in both
networks. Assume two networks composed by n1 and n2

nodes each. The total number of CTC control frames sent by
both networks is n1 + n2, while the number of ACKs is at
most n1 + n2. The maximum number of ACKs is reached
when all nodes are sensed by at least one foreign node.
Hence, the total number of messages sent during phase-2
(s) is given by:

n1 + n2 ≤ s ≤ 2(n1 + n2). (6)

Assuming that it takes t time units to send each message,
the contribution of this phase to the total latency is st.
Additionally, the controllers in each network run Alg. 1
during phase 2. Let us then analyze its time complexity.
CTC-set covers finds all set covers with exponential time
complexity. However, one can reduce the complexity by
setting a threshold (t) that limits the number of generated
set covers. This threshold reduces the branching factor of the
search tree to t, resulting in a time complexity of O(|N |t),
where |N | is the number of local nodes. Note that t is chosen
depending on the processing capabilities available and can
be as small as two, which leads to a time complexity of
O(|N |2). This is particularly useful for very large networks
with thousands of nodes, since coordinators may not have the
required processing capabilities to calculate all set covers.

Finally, no messages are sent in phase 3 but the controller
node still needs to run Alg. 2. Let us now derive the time
complexity in this case. The use of dictionaries N and Z in
Alg. 2 allows to use the recurrence in Eq. (5) to calculate
Gk+1 through Gk. Hence, it is not necessary to use Eq. (4)
which runs in O(|N |2). As a result, a problem with O(|N |2)
complexity is solved in O(|s|), which is O(|N |) in the worst
case.

Note that both networks are dedicated to CTC-CEM during
phases 1 and 2, and all CTC messages are dummy packets
(i.e., packets with no payload). As a result, the network data
transmissions are delayed, unless in-network data packets can
be scheduled to be sent at times that coincide with the CTC-
CEM process. In that case, CTC-CEM runs without delaying
network transmissions.

VI. PERFORMANCE EVALUATION

This section evaluates the performance of CTC-
CEM through extensive simulations. First, we introduce
the methodology and setup. Then, we present the results
related to both network discovery and balancing energy
consumption.

A. Simulation setup and methodology

We use a custom Python simulator and generate two multi-
hop (WiFi and ZigBee) networks, wherein the controller
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Fig. 3: Discovery latency under different dataset densities for (a) a single SYN node, (b) a varying number of SYN nodes
and (c) in the asymmetric case compared to Diff-codes.

TABLE II: Simulated CTC scenarios.

Deployed area
(km x km)

Number of nodes Dataset density (%)
WiFi ZigBee WiFi ZigBee

0.6 x 0.6 20 50 10.75 1.00
0.8 x 0.8 20 50 5.00 99.40
1.9 x 1.9 20 50 1.50 87.40
2.5 x 2.5 20 50 0.50 70.80
3.0 x 3.0 20 40 0.25 55.00
4.0 x 4.0 20 40 0.25 37.87
5.0 x 5.0 20 40 0.00 26.37
5.5 x 5.5 20 80 19.56 22.00

of each network is outside the coverage area of the other
network. The simulator deploys the nodes uniformly in the
considered area, then determines which foreign nodes can be
detected by each local node by using log-normal shadowing
and a Rayleigh fading model, with the variance parameter
set to one in both cases. Finally, the input for the set cover
problem is generated.

The simulation uses the transmission power and receiver
sensitivity of representative WiFi and ZigBee devices. For the
WiFi devices, we consider the Atheros AR9271 chipset with
a transmission power of 27 dBm and a receiver sensitivity of
-91 dBm, which are the nominal values for the IEEE 802.11n
specification at a rate of 6.5 Mbps. For the ZigBee devices,
we consider a Digi XBee S2C module with a Tx power
of 3.1 dBm and a sensitivity of -100 dBm. The model also
assumes omnidirectional 0 dBi-gain antennas for all nodes.
With these parameters, WiFi nodes have a coverage range of
approximately 350 m, while ZigBee nodes have a coverage
range of 140 m.

We consider different deployment areas and number of
nodes for each network by generating different synthetic
datasets. Table II shows some of the simulation parameters
and the obtained dataset densities for each network. The
dataset density term in the table indicates the density of the
set cover matrix, namely, the sum of covered elements in the
RX-CTC table.

We use the datasets to evaluate CTC-CEM. Specifically,
we first investigate how the number of SYN nodes and
the dataset density affect the discovery latency. We then
study the distribution of energy among the nodes when using

dynamic weights (as explained in Section V-B) and improved
schedules (as discussed in Section V-C).

B. Network discovery

Clearly, the discovery latency for the initial network dis-
covery phase (Section IV-A) is defined by the used neighbor
discovery approach. Instead, we consider different scenarios
by varying the parameters in Section VI-A to evaluate the
discovery latency of the periodic network discovery phase
(Section IV-B). Depending on the locations of the nodes,
we obtain set cover matrices with different densities. For
each dataset, we evaluate the performance of CTC-PND by
varying the number of SYN nodes in each network.

Fig. 3a shows the discovery latency for low dataset densi-
ties, i.e., up to 26%. In these scenarios, we set the number of
SYN transmitters and receivers to one and record the worst-
case, average, and the median from 1,000 iterations for each
dataset density. The worst-case discovery latency in the figure
differs considerably from the average and median latencies.
This is due to the random selection of SYN transmitters and
receivers. However, the average and median values show that
the networks usually discover each other much sooner than
the worst-case scenario.

Fig. 3b illustrates the average discovery latencies for
different numbers of SYN nodes. Each line in the figure
corresponds to a certain dataset density (d). The figure
highlights a significant decrease in the discovery latency
when two SYN nodes are used instead of a single SYN node,
which confirms the merit of CTC-CEM. In particular, the
benefit of using multiple nodes becomes more visible under
low densities. We also observe that only 6 SYN nodes are
needed to achieve average discovery latencies of 15 time slots
or less, for all the considered densities. Moreover, the average
discovery latency rapidly reaches a steady-state in a few time
slots for densities of at least 5%. Specifically, such a state is
reached by using 10 SYN nodes or more. This is due to the
fact that the discovery probability increases with the number
of SYN nodes, since more nodes are in the cross-network
coverage area.

We also analyze the case of asymmetric network discovery
in Fig. 3c. In this case, each controller decides on the number
of SYN nodes independently, which leads to a scenario where
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Fig. 4: Average discovery latency vs number of SYN nodes in each network for Diff-codes with different duty-cycles and
CTC-PND with dataset densities of (a) 1% and (b) 55%.

each network chooses a different number of SYN nodes. The
notation (1, 2) in the figure corresponds to the case where the
local network chooses one SYN node and the foreign network
chooses two SYN nodes. Similarly, we consider settings of
(1, 5), (7, 1), and (5, 10). Additionally, we consider the same
scenarios using Diff-codes. To this end, we derive codes by
using the algorithms presented in [13] and obtain duty-cycles
of 38% and 60%. Moreover, we consider a random offset
between the codes, test all these cases on a dataset density of
22% and report the average latency over 1,000 iterations. We
observe that CTC-PND outperforms Diff-codes with 38% and
60% duty-cycle by 79% and 58% on average, respectively.

Next, we compare CTC-PND against Diff-codes in the
symmetric case. To this end, we use duty-cycles of 5%,
10%, 38% and 60% in both networks. Again, we consider
a random offset between the codes and report the average
discovery latencies from 1,000 iterations. Fig. 4 shows the
corresponding results as achieved by Diff-codes with differ-
ent duty-cycles as well as CTC-PND with different number
of SYN nodes. Particularly, Fig. 4a and Fig. 4b present the
average discovery latency for dataset densities of 1% and
55%, respectively. As expected, higher duty-cycles lead to
lower discovery latencies when any number of SYN nodes
are used. Moreover, the mean discovery latency corresponds
to the probability of two overlapping slots in addition to the
probability of nodes being in coverage area. At high densities
such as 55%, where most nodes are in coverage area, all
Diff-codes converge to a fixed discovery latency value since
the dominant factor is the probability of overlapping active
slots. Therefore, increasing the number of SYN nodes does
not affect the discovery latency on average. Only high duty-
cycles decrease the latency, showing that the most efficient
duty-cycle is 100% as in CTC-PND.

Overall, Fig. 4 demonstrates that CTC-PND achieves av-
erage discovery latencies that are 100 times lower than Diff-
codes with a 5% duty-cycle under all evaluated scenarios.

C. Energy balance in the set cover problem
We evaluate the effectiveness of the proposed approach

with dynamic weights (DW) by generating 210 set covers
based on the datasets 4, 5 and 6 (originally proposed in [23])
from the OR-Library, a collection of test datasets widely used
in operation research. Fig. 5a shows the number of times each

node appears in a set cover for the schemes with no weights
and with dynamic weights; the figure does not include nodes
that do not belong to any set cover. Indeed, The DW approach
evenly distributes the nodes in the set covers.

Fig. 5b shows the number of unused nodes with and with-
out DWs for the synthetic datasets described in Section VI-A.
Clearly, unused nodes with DW are always less than or equal
to those without DW. For some of the considered cases, these
number gets close to zero. Therefore, the use of dynamic
weights in the set cover problem improves the fair use of
nodes and, consequently, balances the energy utilization in
the network.

We also use the same synthetic datasets to evaluate the
performance of Alg. 2. In particular, we calculate the Jain’s
fairness index (the higher the better) under both a cyclical
schedule S and an improved cyclical schedule S′. Fig. 5c
shows the corresponding results. The figure highlights that
density does not affect the difference between the Jain’s
index of the schedules. However, datasets with high densities
(around 99%) obtain much higher fairness. This is explained
by the fact that almost any node can be used as CTC receiver
in a dense dataset. Therefore, set covers are made of a few
nodes, which makes it easier to find a schedule with few
repetitions of nodes. On the other hand, a cyclical schedule
that uses all set covers, such as S, is more likely to contain an
uneven distribution of nodes. In detail, S′ achieves a Jain’s
index which is around 97% higher on the average, for all
densities. Although the improvement is significant, S′ is not
the optimal solution to this problem since it is obtained with
a greedy algorithm. Moreover, a perfectly fair scenario (i.e.,
a Jain’s index of one), is only possible in cases where the
intersection of any pair of set covers is empty, e.g., for dataset
densities of 100%.

VII. CONCLUSION

This work introduced a CTC channel establishment
scheme that leverages all nodes in co-located networks to
carry CTC messages. By doing so, we aimed at decreasing
discovery latencies and achieving fair energy consumption
among the nodes. Extensive simulations showed that the
proposed CTC network discovery achieves a discovery la-
tency that is up to 100 times lower than the state of the art,
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Fig. 5: (a) Occurrence of nodes in set covers, (b) number of unused nodes, and (c) Jain’s fairness index.

while effectively balancing energy consumption among the
nodes. As future work, we seek to further optimize the energy
distribution among the nodes by finding better heuristics and
optimization algorithms.
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