
1

Smart contracts for spectrum sensing as a service
Suzan Bayhan, Anatolij Zubow, Piotr Gawłowicz, and Adam Wolisz

Technische Universität Berlin, Germany
Email: {bayhan, zubow, gawlowicz, wolisz}@tkn.tu-berlin.de

Abstract—Mobile network operators (MNO) can opportunisti-
cally use the licensed bands of the primary users (PU) provided
that they monitor the spectrum and stop their transmission
upon detection of the PU. As deploying spectrum sensors may
be prohibitively expensive, the MNO can buy spectrum sensing
service from sensing helpers in its proximity. However, such a
trade requires a framework with three key functions: helper
selection, faulty or malicious helper identification, and payment
to honest helpers. Here, we introduce Spass which provides these
functions and facilitates a fair exchange between the entities
without a trusted third party via smart contracts (SC) running on
a blockchain network. While payments via SCs seem conceptually
simple, realizing it is difficult due to the cost of using SC functions
which might be prohibitive as write/computation operations on
the SCs might have a cost, e.g., in Ethereum. Considering our
design goals and SC-related overhead, we derive the optimal
Spass parameters maximizing the MNO’s profit. Moreover, we
propose a K-means clustering approach to identify independent
malicious helpers, and using both lossless and lossy compression
on the helpers’ sensing report to decrease the cost of write
operations. Via simulations, we show under which conditions
Spass-powered service leads to a profitable business for an MNO.

Index Terms—Smart contract, spectrum sensing, cooperative
spectrum sensing, blockchain.

I. INTRODUCTION

With increasing demand for bandwidth-hungry applications
such as mobile video, a foreseen capacity shortage has become
a key threat to mobile network operators (MNO). To miti-
gate this threat, MNOs can benefit from temporary, demand-
driven expansion of their operation to other bands (licensed
or unlicensed) where the spectrum is shared among multiple
networks. For example, shared use of 3.6 GHz spectrum by
several cellular operators is being considered for 5G roll-out
in Germany [1] as a way to address increasing demand for
spectrum on one hand and its inefficient use due to exclusive
licenses on the other. In licensed bands, an MNO can act as
a secondary user (SU) which has to ensure that the primary
user (PU) of the licensed band does not experience harmful
interference due to the MNO’s opportunistic spectrum access.
To satisfy this requirement, the MNO (referred to as SU
network, SUN) must monitor the spectrum and evacuate the
channel upon detection of a PU signal. While there might be
different pricing policies for opportunistic use of the licensed
band, e.g., [2], we consider here that the spectrum for the
SUNs does not entail any license fees.

Generally speaking, the SUN may not prefer deploying
the sensor infrastructure itself as the associated OPEX and

An earlier version of this paper was presented at IEEE DYSPAN 2018.

Spass contract {
 center_frequency,
 sensing_rate,
 min_pd_accuracy,
 max_pfa,
 function helper_selection()
 function malicious_helper_identify()
 function payment()
 function sensing_report()
}
 Candidate helpers for spectrum

sensing service
(malicious and honest helpers)

SU network
Ethereum blockchain

network

Fig. 1. Spass: Spectrum sensing as a service via smart contracts. Helpers
which consist of both malicious and honest ones can offer their sensing service
and get payments in return, if selected for the service and identified as honest.

CAPEX might be high. Instead, the SUN can launch a crowd-
sensing campaign and collect sensing reports from multiple
sensors to maintain a certain level of sensing accuracy. Crowd-
sourced spectrum sensing is at the interest of many other par-
ties, e.g., regulators or third-party spectrum sensing/database
providers. Regulators need to monitor the spectrum activity
both for better policy making and management of this precious
natural resource and to catch unauthorized use of the spectrum,
i.e., spectrum patrolling [3], [4]. Similarly, spectrum sensing
providers can enjoy the sensing capacity of ubiquitous mobile
devices to build their spectrum map in a scalable manner [5].
However, sensing units in general lack motivation to per-
form sensing only for altruistic reasons. Instead, to motivate
sensors for participation in the crowd-sensing campaign, the
SUN can offer some rewards, e.g., monetary rewards. Smart
contracts (SC) running on blockchain distributed ledger [6],
[7] are as if tailored to this purpose: a SUN, can publish
its requirements for sensing service as in Fig.1 and nodes in
its vicinity can subscribe to the contract if they agree with
the contract terms. In this paper, building on our previous
work [8], we introduce a framework for realizing crowd-
sensing requested by a task owner and performed by multiple
sensors, so called helpers. While our solution can be used for
any crowd-sensing application, we consider spectrum sensing
as our particular use case and call this solution Spectrum
Sensing as a Service (Spass)1.

Like any other service, efficiency and business feasibility
of Spass matters for the SUN. For efficiency, helpers with
high sensing accuracy should be selected by the SC so that
idle spectrum can be discovered with a high probability with
the minimum number of helpers. Additionally, the spectrum
regulator requires a certain level of PU detection accuracy
so that the PU network is minimally affected by the SUN.
When it comes to feasibility, it depends on two factors. First,
the helpers should be willing to participate in Spass. Second,

1Spass means fun in German.

suzan bayhan
To appear at IEEE TCCN 2019.

2

cost of Spass should not outweigh SUN’s expected profit that
will be gained from the SUN’s subscribers being served on
the discovered secondary spectrum. The SUN has to pay the
following two cost components: (i) cost of using SCs on the
blockchain and (ii) payment to the helpers for their service.
In Spass, the SC is used not only for payments but also for
other tasks like selection of helpers among candidate helpers
and detection of fraudulent ones. Thus, all these operations
running on the blockchain result in computation at the miners
and entail a cost that needs to be paid eventually by the SUN.
Hence, it is challenging to design an SC that ensures high
efficiency but also incurs low cost.

A desirable property of Spass is that it can assess whether
a helper fulfills the requirements of the task. In case a helper
fails to satisfy the requirements, Spass should exclude this
helper (referred to as malicious helper) from payment and
further service. But, this accounting has to be done at the
SC as the SUN might have incentives to deviate from the
contract terms, e.g., repudiating the payment for the useful data
provided by helpers. The SC in Spass evaluates the accuracy
of each helper based on sensing reports collected from each
helper. As helpers transmit their reports asynchronously, the
SC has to store the incoming reports before it processes all
data for malicious helper detection. While an SC is usually
limited in its storage space, it is also undesirable to store
large amount of data as each write operation results in a
transaction which is not free. Hence, Spass has to cope with the
challenge of identifying malicious helpers while not requiring
huge amounts of sensing data from helpers.
Contributions: In a nutshell, our contributions are fourfold:
• First, we design a framework wherein nodes equipped with

spectrum sensors (ranging from smart phones to sophisti-
cated spectrum analyzers) can offer their sensing service
and will be paid in return if they meet the service level
agreements described by the SUN when requesting this
service. Note that prior crowd-sourced spectrum sensing
proposals, e.g., [3]–[5], [9]–[11], focus on sensing accuracy
and assume self-motivated helpers that participate in the
sensing campaign without being paid. In contrast, our focus
is on the practical mechanism to enable crowd-sourcing via
SCs. Different than our earlier work [8], we optimize the
SC parameters to ensure that SUN profits from Spass.

• Second, we design a new malicious helper detection scheme
different than [8]. Clustering-based Helper identification
scheme (CHI) achieves both high accuracy in detecting
malicious helpers (specifically, free-riders2) and very low
false alarm rate. The former is essential to motivate the
SUNs implement Spass-based spectrum discovery whereas
the latter is paramount to keep the helpers willing to
provide their sensing service. Note that the earlier works
on malicious sensor detection analyze a large amount of
sensing data to identify sensing anomalies (e.g., attackers)
[14] or rely on some trusted infrastructure nodes [5]. In

2Another threat is that attackers have enough computation, communication
resources, and sufficient credits in their accounts to launch attacks. However,
such cases are less probable and requires strongly motivated malicious helpers
rather than the free rider model considered in this paper. For a more discussion
on possible attacks in crowd-sourcing platforms, please refer to [12], [13].

contrast, Spass should keep the information collected from
sensors low due to the cost of using the blockchain network.
Compared to malicious worker detection in generic crowd-
sensing scenarios such as [15], Spass assesses the helpers
in the SC without access to the ground truth.

• Third, to reduce the amount of data to be stored in the
SC, we consider both lossy and lossless compression of
the sensing reports. Note that [8] only provides a lossy
compression scheme whereas this paper presents not only
a lossless compression scheme but also elaborates on how
lossless compression is affected by the PU dynamics.

• Fourth, we show the feasibility of Spass via prototype
implemented in Solidity.3

The rest of the paper is organized as follows. Next, we
summarize the related work in Sec. II. We first provide a
brief background on SCs in Sec. III, present an overview of
Spass in Sec. IV and detail the considered system in Sec. V.
We discuss in Sec.VI how a SUN can optimize the contract
parameters to maximize its profit while ensuring the design
goals of Spass. In Sec. VII and Sec. VIII, we present our
proposals for compressing the sensing reports and detecting
the malicious helpers, respectively. We evaluate performance
of our proposals in Sec.IX. Finally, we highlight the paper’s
contributions and conclude in Sec. X.

II. RELATED WORK

The most relevant line of research is threefold: i) crowd-
sourced spectrum sensing, ii) SC-based crowdsourcing, and
iii) malicious helper detection (MHD).
Crowdsourced spectrum sensing: We can categorize exist-
ing work into four as (i) feasibility analysis which aims at
understanding whether low-end inexpensive RF sensors can
provide sufficient sensing accuracy, (ii) selection of sensors
among the candidates considering accuracy as well as securi-
ty/privacy aspects, (iii) fusion of the sensor readings, and (iv)
incentives or pricing for crowdsensing. One of the earliest
studies suggesting crowdsourced spectrum sensing is [10]
which provides a feasibility analysis. Similarly, through a large
scale measurement study, Saeed et al. [11] show that for TV
white space detection, a certain density of low-cost spectrum
sensors can provide a comparable accuracy to that of a highly-
complex, expensive spectrum analyzer. The accuracy of spec-
trum discovery improves further if the constructed spectrum
map is combined with the local readings of a white-space
device (WSD). Under a budget constraint, SpecSense [4]
selects the minimum number of sensors whose measurements
will be interpolated to predict the spectrum state in other
areas. SpecSense aims at minimizing the prediction error
at the location of spectrum queries and therefore favors the
sensors in proximity of the query locations. As crowdsourcing
is prone to inaccurate sensing decision due to reports from
dishonest or malicious sensors, Zhang et al. [5] propose to
deploy trusted anchor nodes to assess the trustworthiness of
sensors in addition to reputation scores to account for both
short term and longer term sensing accuracy of a sensor.
Moreover, [5] weights the sensing reports in decision fusion

3https://github.com/zubow/Spass_contract

3

based on a sensor’s reputation. Finally, [16] shows the coupling
between sensor selection and pricing due to the correlation
between two sensors’ sensing reports. All these proposals can
be used as the sensor selection block in Spass and utility
maximization problem should be changed accordingly. Our
main focus is on a framework facilitating all these crowd-
sourcing based proposals via a payment mechanism.
SC-based crowdsourcing: Several studies [15], [17] sug-
gest using SC to realize distributed crowdsourcing appli-
cations and micropayments in a dispute-free, trusted, and
distributed manner. Spass shares many similarities in design
with CrowdBC [15] which is a framework for a generic
crowdsourcing application and enables a requester and workers
to trade, the requester to define criteria for worker selection,
and evaluation of a worker’s service. Spass relies on data
compression and encoding to decrease the amount of data to be
written to the blockchain while CrowdBC proposes to store
only hash of the actual data on-chain and the raw data off-
chain in a distributed database. To prevent free-riding attack,
CrowdBC requires that each worker gives some deposits
before participating in crowdsourcing. Spass, on the other
hand, is robust against free riders owing to its MHD scheme
which renders free riding irrational. PaySense [17] is more
focused on providing anonymity to the workers/helpers and
proposes to use multiple Bitcoin addresses as pseudonyms.
Another privacy-preserving scheme is [18] which designs a
truthful auction scheme to decide the amount of payment to
each worker. We acknowledge that the problem addressed by
PaySense and [18] is paramount, and Spass can also be
extended with privacy-preserving features. Spass differs itself
from CrowdBC and PaySense by providing solutions on
how to evaluate the service provided by helpers and identify
malicious helpers, which are overlooked in [15] and [17].
Finally, while our main focus is on the design of a distributed
crowd-sensing system and MHD in this system, we believe
that solutions such as [19] can complement our proposal with
improvements on the privacy and accountability of each entity.
Malicious helper detection: Our proposal CHI is inspired
from [20] which suggests Hamming-distance based assessment
of sensing reports. Different than [20], we apply K-means
clustering using Hamming-distance based scores. As reducing
information collected at the SC becomes a necessity, we also
propose lossy and lossless compression of the sensing reports.
[5] suggests that operator-deployed trusted nodes evaluate
the reports from sensors and quantify their sensing accuracy.
Instead, Spass relies only on data collected from helpers.

III. ETHEREUM SMART CONTRACTS IN A NUTSHELL

Ethereum [21] is a blockchain-based decentralized comput-
ing platform which executes and validates transactions by the
help of miners. As a compensation for their work, miners
are paid for each transaction, e.g., writing a transaction in
a block and performing other tasks such as tasks to keep
transaction data safe. In Ethereum, cost of an operation is
measured in gas cost, i.e., in units of “ether" (ETH) [21].
Total cost of a transaction is calculated as a multiplication of
total gas cost and gas price which might change over time. A

ETHEREUM BLOCKCHAIN

Spass contract

SU network

SU-contract link

PU

Helper-contract
link

SU network users Helpers for
sensing

SU-helper link

Fig. 2. Spass system model: SUN is interested in accessing the primary
user’s band opportunistically to serve its users. Helpers are the nodes offering
sensing service. The agreement and transactions are processed through the
smart contract defined in Ethereum blockchain.

smart contract (SC), identified by a 160-bit unique address in
Ethereum, is a computer protocol running on the blockchain
to define, verify, and enforce the process of a contract [6],
[22], [23]. Different than ordinary accounts in Ethereum, the
SCs have also storage space for its relevant data and a set
of functions. Ether can be sent from an external account to
an SC if the contract has a payable function. Moreover, a
contract can send ether to an account identified by an external
address. While SCs are stateful and allow storage, it is very
costly to store large amounts of data on the contract. Similarly,
computation is costly. Therefore, on-chain computation and
storage should be avoided as much as possible [15].

IV. OVERVIEW OF SPASS

In this section, we overview how Spass works before we
provide more details in Section V.

A. Crowd-sensing using smart contracts (SC)

Let us first introduce the key blocks of a crowd-sensing
framework using SCs. A task requester publishes the task defi-
nition by deploying its SC on the Ethereum network. Interested
helpers can register to the task by calling the SC, e.g., register
function, to show their willingness to participate in the crowd-
sensing campaign. Then, the crowd-sensing framework needs
to implement the following three components: helper selection,
malicious helper identification, and clearing. The logic of each
component is application-specific. In the rest of the paper, we
will consider spectrum sensing as our application and present
the details of each component.

B. Crowd-sensing for spectrum discovery

We consider a system as in Fig.2. The SUN is an MNO
interested in expanding its capacity with the spectrum that
belongs to a PU but is underutilized and therefore can be used
by the SUN if discovered via spectrum sensing. This scenario
might reflect dynamic spectrum sharing among mobile net-
works as envisioned by UK’s Ofcom [24] or Germany’s Bun-
desnetzagentur [1] where a PU MNO is active in its spectrum
with a certain probability. For spectrum discovery, the SUN
uses Spass which facilitates it to publish its requirements for
the sensing service and the helper nodes to subscribe to the

4

published SC in case they agree the terms of the SC. While we
overview only the high level tasks in this paper, an interested
reader can find more on SC design in our earlier work [8]
or [15]. Next, we list the operation steps of Spass which are
depicted also in Fig.3.

• Step 0: (SC generation) The SUN defines the requirements
of the sensing service (e.g., minimum sensing accuracy of
each helper) as well as the payment policy (e.g., when and
under which conditions helpers are paid and exempted from
payment) and publishes the SC on the blockchain network.
Upon registration, the SUN receives the SC unique address.

• Step 1: The SUN broadcasts the address of the SC to let the
nodes in its proximity know that it is willing to buy sensing
service. Another option for the SUN could be to publish its
contract on a third-party web service which lists all SCs.

• Step 2: Sensor nodes receiving this broadcast message
check the SC using the unique SC address.

• Step 3: Each sensor node decides whether it wants to
provide the requested sensing service or not comparing its
own properties/cost and the SC’s terms.

• Step 4: (Helper registration) If a sensor node agrees with
the terms of the SC and can meet the requirements of the
SC, it registers to the SC signalling its willingness to sense.4

This subscription message can also include additional infor-
mation such as sensor’s accuracy of sensing in terms of
probability of PU detection (pd) and probability of false
alarm (pf) as well as its price for sensing service.

• Step 5: (Helper selection) The SC selects H helpers from
the candidate helpers considering various parameters, e.g.,
the price, sensing accuracy, reputation of each helper. The
SC has to make sure that the sensing accuracy after decision
fusion of the sensing data from the selected helpers can meet
the regulatory requirements, e.g., pd > 0.9 and pf 6 0.1.

• Step 6: Selected helpers are notified and can start sensing
with the required rate, e.g., sensing every 10 seconds.

• Step 7: (Spectrum sensing) Helpers send their sensing data
directly to the SUN through the SUN-helper channel. The
SUN applies a decision fusion rule, e.g., MAJORITY, on the
received sensing data to decide on the state of the spectrum.
The SUN takes the appropriate action based on the state of
the channel, i.e., spectrum access in case of idle channel
and defer access if spectrum is detected to be busy.

• Step 8: (Verification) Helpers send their sensing report
to the SC at the end of each verification round through
the helper-contract link. A verification round consists of
multiple sensing slots and denotes the time where each
honest5 helper gets payment for its service in the previous
verification period. To identify whether a helper was honest,
the SC runs its malicious helper detection (MHD) scheme
which takes all sensing reports as input and gives the list
of claimed malicious helper IDs as output. The sensing
report might be a compressed version of the sensing data

4Upon registration, the helper might also be requested to make a deposit
for its participation as proposed in [15]. Such a deposit mechanism would
discourage malicious helpers and DDoS attackers.

5The term honest refers to a helper which satisfies the required sensing
accuracy. Here, we consider a helper malicious if, although it is honest by
intention, it provides inaccurate sensing data, e.g., due to hardware errors.

w
ire

d

lic
en

se
d

3. accept
contract?

1. contract
announcement
(ETH address)

un
lic

en
se

d

Ethereum
network

Helpers
SU

0. contract
generation

4. register

5. select
helpers 6. check if

selected

2. retrieve
contract SLA

for each selected helper

fo
r e

ac
h

he
lp

er

7. start
sensing

8. send
compressed

sensing

9. Verification
and clearing

PU activity
report

Fig. 3. Interaction between entities in Spass.

representing the sensing outcome of the respective helper
during the previous round.

• Step 9: (Clearing) The claimed malicious helpers are
excluded from the SC and the rest are paid for their sensing
service. Next, the SC selects either new helpers from the
candidate helpers to replace the excluded malicious helpers
or in Step 5 the SC already admits more helpers than needed
and there is still sufficient number of helpers in the SC. The
SC goes back to Step 6 until the SC’s expiry time.

V. SYSTEM MODEL

Our system consists of four entities: (i) SUN, (ii) helpers,
(iii) SC running on a blockchain network, and (iv) miners
in the blockchain network. Miners are computation-rich re-
sources who need to solve a puzzle with tuneable difficulty
to write any transaction and related information on to the
Blockchain. Note that helpers and SUN are not part of the
blockchain network. Please refer to [6], [25] and references
therein for more details on blockchain.

Let assume that the SUN wants to get spectrum sensing
service for a duration of Tc seconds.6 Therefore, it specifies
Tc in its SC with other information on the sensing service
and deploys the SC to the blockchain. The spectrum that the
SUN is interested in belongs to a PU who has no activity in
its spectrum with probability p0 and accesses the spectrum
with probability (1-p0). In other words, we assume that PU
channel occupancy is a stationary random process following
a Bernoulli distribution taking value 0 with probability p0.
Moreover, we assume that SUN can acquire or predict this
information via spectrum observation and traffic prediction,
e.g., [26]. Note that a PU can also decide to lease its spectrum
to SUs as suggested by GSMA [27]. In that case, the SU
can acquire the information directly from the PU about PU’s
network characteristics including the expected traffic load. The

6Traditional contracts have finite time. Upon expiry of a contract, if the
parties are satisfied bilaterally with the exchange (of service and corresponding
payment), they can renew the SC. This applies to SCs in our system.

5

SUN can serve its customers on PU’s spectrum with a spectral
efficiency of κ bps/Hz during the PU’s inactive times and the
SUN charges its customers µ e per bps. Note that µ is an
expected price calculated by the SUN, e.g., considering traffic
fluctuations. Table I summarizes key parameters.

Let H = {h1, · · · , hN} be the set of helpers each with
certain sensing capability and cost. We assume that all honest
helpers have identical sensing capability (expected phd , phf).
However, the sensing outcome of two honest helpers might
differ from each other at a particular sensing realization
depending on the shadowing or fading conditions. Let N be
the total number of nodes which can potentially act as a
sensing helper for the SUN. Moreover, we denote by Nm
the malicious nodes in the network. We denote the fraction
of malicious nodes in the helper population by ψ and refer to
this value as probability that a node is malicious. A malicious
helper generates fake sensing data without sensing. In this
way, it does not consume its energy and expects to receive
payments if it is not detected to be malicious. We assume
that the malicious helpers are aware of p0 and generate a
sensing outcome 1 with probability α1 = (1 − p0). With
this model, a malicious helper’s expected sensing accuracy
is: pmf = p0α1 = p0(1 − p0) and pmd = (1 − p0)2. Note
that the SUN can first collect some environment information
using its infrastructure, similar to trusted anchors in [5], to
develop some awareness of its operation environment, e.g.,
helper sensing accuracies, fraction of malicious helpers.

The SC will select H helpers from N candidates to meet
the regulatory requirements on probability of detection (pd∗)
and probability of false alarm (pf∗). As majority logic7 is
robust against malicious helpers [8], we assume that the SUN
applies majority logic for deciding on the spectrum state using
the collected spectrum sensing data from the sensing helpers.
The SC selects helpers for sensing service for a duration of V
time units, e.g., seconds, which is a system parameter set by
the SUN. We call this duration verification round (cf. Fig.4)
and assume that Tc/V is an integer. Then, the SC will be valid
during NV = Tc/V rounds. During this time period V , each
selected helper senses the spectrum with sensing rate Rs Hz.

At the end of a verification round, each helper sends a report
generated from its sensing outcomes. The outcome of each
sensing event is one bit information showing if the spectrum
is observed as idle (0) or busy (1). Note that verification round
concept is necessary for the SC to be able to take an action
against misbehaving helpers. Moreover, receiving payments
earlier attracts the honest helpers to participate in the SC, e.g.,
earlier than Tc. In addition, if helpers change their behavior or
their sensing accuracy varies over time (e.g., due to mobility),
then the SC can replace such helpers with new ones. But,
verification results in additional cost to the SUN for the use
of blockchain resources.

We denote the size of a helper’s sensing report by S bits
which equals to S = Reth ·V bits where Reth Hz is the rate of
data written to the SC. We denote the cost of write operation
by µeth e per bps and assume a flat-rate payment for sensing
paid to each helper denoted by µs e per bps. As size of the

7We assume that at least half of the helpers are honest.

Contract
duration Tc

Verification round k-1
(V)

Verification round k

Helper
selection MHD

Update
blacklisted
helper IDs

Clearing

0 1 1 0 0 1 0 1 1 1

Spass contract

sensing
rounds

0

Fig. 4. Verification round consists of multiple sensing rounds. At the end of
a verification round, helpers send their compressed sensing reports to the SC.

total sensing data for a verification round equals to RsV bits,
we denote the ratio between the total size of the sensing data
and size of the sensing report by β and refer to this ratio as
compression factor. We calculate the sensing report size as:
S = RsV

β bits.

VI. OPTIMIZING SPASS FOR MAXIMUM SUN PROFIT

A. Trade-offs

The SUN needs to design its SC parameters such that
its profit is maximized. To this end, we need to understand
several trade-offs. Number of helpers (H): Spectrum sensing
accuracy can be improved by increasing number of helpers.
Hence, for both regulatory compliance and high spectrum
discovery probability, the SUN prefers setting H high. On
the other hand, as each helper has to be paid for its sensing
service, the SUN would prefer minimizing H . Verification
round duration (V): The length of this period is relevant for
two reasons. First, it determines the earliest time a sensing
helper gets its payment. For motivating helpers, the SUN
prefers shorter V . Second, it is the earliest time the contract
can take an action about possible malicious helpers in the SC.
Hence, the SUN would prefer a quick action from Spass in
excluding malicious helpers and benefit from shorter V . But,
the SC needs to collect sufficiently many sensing samples from
helpers to run its malicious helper detection (MHD) algorithm
with high accuracy. Hence, V should not be too small. Next,
we formulate an optimization problem that the SUN needs to
solve to decide on the optimal (H ,V) parameters.

B. Cost and utility of the SUN

Let pf (H, j) denote the false alarm probability if H helpers
participate in the sensing process and j of these helpers
are malicious. Let p̄f (H) define the expected false alarm
probability under H helpers. We represent the expected utility
of the SUN in terms of the spectrum discovered by Spass.8

UH = p0(1− p̄f (H))

= p0(1−
H∑
j=0

(
H

j

)
ψj(1− ψ)H−jpf (H, j)︸ ︷︷ ︸

p̄f (H)

) (1)

8Note that the utility is the upper bound as some opportunity is lost during
the sensing periods where the SUN might need to wait for the sensors data.

6

where pf (H, j) for majority logic equals to [8]:

pf (H, j) =

H∑
K=dH/2e

min(H,j)∑
i=0

(
j

i

)
(pmf)i(1−pmf)j−i (2)(

H−j
K−i

)
(phf)K−i(1−phf)H−j−K+i.

Next, we calculate the net profit of the SUN for 1 Hz of
the discovered spectrum.
SU income Υ+: We can calculate the monetary reward the
SUN will earn by serving its customers via the discovered
spectrum considering each verification round v. If we denote
the utility at round v by Uv , we then calculate Υ+ as follows:

Υ+ = µκV (

NV∑
v=1

Uv) Euros. (3)

SU payout Υ−: If the contract selects H helpers and identifies
Ĥm,v of the selected helpers as malicious, we can calculate
the total amount paid to the service as follows:

Υ− = Rs(
µeth
β

+ µs)V

NV∑
v=1

(H − Ĥm,v) Euros. (4)

Note that the helpers marked as malicious (i.e., blacklisted)
receive no payments and will not be selected again.
Profit of the SUN: From (3) and (4), we calculate the profit
of the SUN ∆Υ = Υ+ −Υ− as follows:

∆Υ = V

NV∑
v=1

µκUv − (H−Ĥm,v)Rs(
µeth
β

+µs) Euros. (5)

The SUN’s contract should be initiated with the optimal
parameter values V ∗ and H∗ such that its expected profit is
maximized. Hence, we can write the objective of the SUN
as: maxV,H ∆Υ. Certainly, there are several constraints which
the SUN has to consider. First, the regulatory requirements on
pf and pd must be satisfied at each verification round. As
the exact number of malicious helpers is not known by the
contract, the expected p̄f (H) and p̄d(H) should be considered
in deciding H , which gives us the following two constraints:

p̄f (H) 6 pf ∗ and p̄d(H) > pd ∗ .

Second, Spass can attract nodes to act as helpers only if its
MHD algorithm works with very low false alarm values, i.e.,
its MHD does not blacklist honest helpers. Let us denote
false alarm rate of MHD by qf and probability of correctly
identifying a malicious helper by qd. These two values depend
on the MHD algorithm as well as the number of bits in the
sensing report of each helper, number of sensing helpers, and
number of malicious helpers. Spass has a target MHD accuracy
values denoted by qf∗ and qd∗ corresponding to the desired
false alarm and detection probability of MHD algorithm. We
denote the constraint on MHD accuracy as:

qf 6 qf ∗ and qd > qd ∗ . (6)

Recall that first constraint of (6) is essential to ensure that
helpers will participate in sensing service as they will be
paid highly probably for their sensing service. Meanwhile,

TABLE I
KEY PARAMETERS

Parameter Description
N , Nm Number of total nodes and malicious nodes in the network
H , Hm Number of helpers and malicious helpers in the contract
Rs, Reth Rate of sensing and rate of writing to the SC (bps)

V Duration of a verification round
ψ Probability that a helper is malicious
S Report size of each helper

Υ, κ SUN’s profit and spectral efficiency
β Lossy compression factor
pf Probability of false alarm
p0 Probability that PU channel is idle
µeth Cost of writing to Ethereum SC (bps)
µs Price of sensing paid to each helper (bps)
µ Price of serving user (bps)

second constraint in (6) is paramount to attract the SUN
as Spass guarantees that the likelihood of SUN paying to
malicious helpers is very low.

While our goal is to find a closed-form formula repre-
senting the relation between qf (and qd) and the number of
bits in the sensing report, number of helpers, and number
of malicious helpers, it is not straightforward. Instead, we
will experimentally analyze these functions to uncover their
behavior. Given H and (qd, qf) values, we can calculate the
total number of helpers identified as malicious as follows:
Ĥm,v = H(ψqd + (1− ψ)qf).

C. Problem formulation

SUN profit maximization problem can be formulated as:

P1: max
V,H

(
V

NV∑
v=1

µκUv−(H−Ĥm,v)Rs(
µeth
β

+µs)

)
(7)

NV = Tc/V (8)
Uv = p0(1− p̄f (H)) (9)

p̄f (H) =

H∑
j=0

(
H

j

)
ψj(1− ψ)H−jpf (H, j) (10)

pf (H, j) =

H∑
K=dH/2e

min(H,j)∑
i=0

(
j

i

)
(pmf)i(1−pmf)j−i (11)(

H−j
K−i

)
(phf)K−i(1−phf)H−j−K+i.

Ĥm,v = H(ψqd + (1− ψ)qf) (12)
qf 6 qf ∗ and qd > qd∗ (13)
p̄f (H) 6 pf ∗ and p̄d(H) > pd∗ (14)

S =
RsV

β
(15)

V ∈ {1, · · · , Tc} and H ∈ {1, · · · , N} (16)

Objective in (7) formally states the expected monetary profit
of the SUN achievable over NV rounds after reduction of its
payments both the Ethereum and the sensing helpers perceived
as honest (H−Ĥm,v). Constraint (8) defines the number of
rounds in terms of the total contract period and length of one
verification round. Constraint (9) defines the expected utility
at each round v. Constraint (10) calculates the expected false

7

alarm probability considering all possible number of malicious
helpers in the sensing group while Constraint (11) calculates
the false alarm probability in case of j malicious helpers in the
sensing group. Constraint (12) computes the expected number
of helpers detected as malicious by MHD algorithm. Con-
straint (13) defines the target values of MHD false alarm value
and detection probability, respectively. Similarly, target values
for spectrum sensing accuracy are defined in Constraint (14)
while Constraint (15) denotes the sensing report size in terms
of compression factor, sensing rate, and the verification period
length. Finally, variables are defined in Constraint (16). P1 is
difficult to solve analytically as it is hard to model qd and qf .
Instead, we will experimentally find the number of bits needed
to achieve qd = 1 and qf = 0 and will remove Constraint (13).

Assume that minimum sensing report size must be Smin to
ensure qd = 1 and qf = 0. Then, assuming that the SC can
identify all malicious helpers at the end of the first verification
round, we can divide the operation of our solution into two
phases. In the first phase which corresponds to the time after
the contract selects helpers, there might be malicious helpers
in the selected sensing helper set. Let T0 denote the time from
the contract initiation to the first verification time, H0 denote
the number of sensing helpers in this period, and U0 denote the
corresponding utility. In the second phase which corresponds
to the time after the first verification till the contract expiry, the
SC will not have any malicious helpers unless helpers change
their behavior. In this paper, we assume that helpers do not
change their strategy.9 We denote the remaining time for the
sensing contract in this second phase by T1 = Tc − T0, the
number of sensing helpers by H1, and utility by U1. Now, we
rewrite the simplified problem as:

P2: max
T0,H0,H1

T0(µκU0 −H0Rs(
µeth
β

+µs))

+ (Tc − T0)(µκU1 −H1Rs(
µeth
β

+µs) (17)

T0 6 Tc (18)
U0 = p0(1− p̄f (H0)) (19)
U1 = p0(1− pf (H1)) (20)
H0 > H1 (21)
pf (H1) > p∗f and pd(H1) > p∗d (22)

p̄f (H0) > p∗f and p̄d(H0) > p∗d (23)

Smin >
RsT0

β
(24)

where decision variables are defined as: T0 > 0 and H0, H1 ∈
{1, · · · , N}. We will show that T0 should be kept as short as
possible set by Constraint (24) to maximize the objective func-
tion in (17). The reason is that a = µκU0 −H0Rs(

µeth

β +µs)
will never exceed b = µκU1 − H1Rs(

µeth

β +µs) under the
considered operation parameters. In other words, as long as the

9Although based on this assumption, Spass could operate without malicious
helper identification so that SUN pays only the sensing-related costs, we still
include the verification step and its cost in our model. This is to remove
incentives of trustworthy helpers to become malicious helpers.

0 0.2 0.4 0.6 0.8 1
p0

0

500

1000

S
iz

e
[b

its
]

no coding
lossless coding

lossy coding (=2)

lossy coding (=10)

Fig. 5. Impact of compression - no coding, lossless vs. lossy coding.

following inequality holds, T0 is bounded by Constraint (24):

U1 − U0 > (H1 −H0)
Rs(

µeth

β +µs)

κµ
.

Assuming the operation parameters to satisfy the above in-
equality, then we set T0 using Constraint (24) as follows:

T0 =
Sminβ

Rs
seconds. (25)

With T0 derived from (25) and inserted in (17), we solve
P2 to find optimal H0 and H1. P2 is a non-linear problem
due to p̄d(·) and p̄f (·) functions in both the objective and the
constraints. Therefore, we will find the solution via exhaustive
search with complexity O(N2). This complexity follows from
our assumption that all helpers in each category are identical
in their sensing accuracy.

VII. COMPRESSION FOR SENSING REPORTS

Our goal is to decrease the amount of data written to the
SC to decrease the SUN’s payment for Spass. In case of the
Ethereum BC, it is the amount of gas to be paid each time new
sensing data is reported to the SC. To understand the relation
between the sensing report size and the gas consumption, we
implemented in Solidity the process of reporting.10 From the
collected data, we obtained the below equation using linear
regression (R2 ≈ 1). We see a linear relationship between the
number of reported sensing bits S and the gas to be paid:

gas(S) = 1600S + 34500 (26)

where S is the size of the reported (compressed) data in bits.
Note that the gas consumption is dominated by the cost of
storing S bits inside the contract which is needed as the
sensing helpers report their sensing reports asynchronously.
The lowest possible gas price at the time of writing is around
1 Gwei (109 Gwei = 1 ETH) whereas the market price of 1
ETH is 500e. This allows us to express the cost of using
Ethereum network as below:

µeth = (1600S + 34500) · 10−9 · 500e

=
1

1250
S +

69

4000
. (27)

We can reduce the number of reported and stored sensing
bits in the SC by applying compression techniques. Compres-
sion can be either lossy or lossless, which will affect the qual-
ity of MHD algorithm. If the compression is lossy (e.g., only

10Please visit https://github.com/zubow/Spass_contract for the source code.

8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p0

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
E
x
p
e
ct

e
d
 d

is
ta

n
ce

Honest-Honest

Honest-Malicious

Malicous-Malicious

Fig. 6. Expected distance between two helpers according to their type with
increasing p0. phf = 0.08 and phd = 0.90.

1 bit is kept in every β bits), then the data used for MHD may
not represent the reality resulting in low MHD performance,
i.e., low detection accuracy and high false alarms. If MHD has
a low detection accuracy, then the malicious nodes continue
to receive payments while their incorrect input might result
in low sensing accuracy at the SUN. The second impact of
low MHD accuracy, particularly due to high false alarms in
identifying malicious helpers, is the low incentives for nodes
to act as helpers. With these goals in mind, we propose next
a lossless compression scheme for spectrum sensing reports.

The idea of compression is to remove redundancy in data.
The coding problem is to assign code-words to each of
the symbols using as few bits as possible. Specifically, we
exploit the fact that some symbols are more likely than others
which allows us to use more efficient variable-length coding.
According to [28], the theoretical optimum for the average
number of bits needed to encode a symbol equals to the
entropy X which is defined as:

X =

L∑
i=1

qi log2

1

qi
(28)

where qi represents the probability of the occurrence of symbol
i. In our case, a symbol represents the occupancy state of the
PU channel and hence L = 2. The corresponding probabilities
for each symbol (idle and busy slot) are q0 = p0 and q1 = 1−
p0, respectively. Note that sensing helpers are able to estimate
p0 from the observed sensing data with sufficient accuracy
or this value is provided by the regulator. Hence, a sensing
report of size S = RsV

β with lossy compression factor β can
be compressed using optimal source coding to S∗:

S∗ = XS bits. (29)

From a practical point of view, having just two symbols is
not sufficient to design efficient coding, i.e. a Huffman code
would just be a fixed length code with length of 1 bit/symbol.
Hence, the usage of block codes is desirable.

Fig. 5 shows that the higher compression is possible for
sparse sensing data, i.e., low/high p0. For PU bands with
low/high p0, the helpers can have shorter sensing reports,
which will decrease the cost of Spass. Moreover, lossy com-
pression (β > 1) helps to further reduce the amount of data.

VIII. CHI: CLUSTERING-BASED MALICIOUS HELPER
IDENTIFICATION

Until this section, we have assumed the existence of an
MHD algorithm which can achieve perfect detection accuracy

0.1 0.2 0.4 0.5

0 1 1 0 0 1 0 1 1 1

0 0 0 0 0 1 0 1 0 1

H1 H2

Normalized Hamming distance
0.0 1.0

0.5 0.70.0 1.0

Normalized Hamming distance

1 0 1 0 0 0 0 1 0 0

H3H4

0 1 0 1 1 1 1 1 0 0

1 0 1 0 0 0 0 1 0 0

H3 H4

0 1 0 1 1 1 1 1 0 0

0 0 0 0 0 1 0 1 0 1

H0

0 1 1 0 0 1 0 1 0 1

H1

0 1 1 0 0 1 0 1 1 1

H2

0 1 1 0 0 1 0 1 0 1

H0

Fig. 7. A helper’s score is determined based on its distance from other helpers
calculated as normalized Hamming distance between 10-bit sensing reports.
h0’s distance from all helpers is [0.1, 0.2, 0.4, 0.5] and therefore 50-percentile
score is 0.2. However, h4’s score is 0.5 as it is a malicious helper and its
sensing report differs from all others, even the report of malicious helper h3.

given a certain size (S > Smin) of sensing report. Now, we
present our MHD algorithm, namely clustering-based mali-
cious helper identification (CHI).

CHI relies on the similarity of sensing reports collected from
helpers. The key insight is that selected helpers in the proxim-
ity of the SUN should have similar sensing observations, if not
the same due to differences in the propagation environment.
Hence, if two reports are very similar, e.g., they differ in only
few bits, the helpers are highly probably honest helpers. If
sensing reports differ from each other noticeably, then at least
one of the helpers is malicious.

Let di,j be the normalized Hamming distance between hi
and hj’s sensing reports [8], [20]. Given phf , phd , pmd = (1 −
p0)2, and pmf = p0(1 − p0), the expected distance between
two honest helpers equals to [20]:

E[dh,h] = 2p0p
h
f (1− phf) + 2(1− p0)phd(1− phd).

Expected distance between a malicious and honest helper is:

E[dh,m] = p0(phf (1− pmf) + pmf (1− phf))+

(1− p0)(phd(1−pmd) + (1− phd)pmd).

Finally, we can calculate the expected distance between two
malicious helpers as follows:

E[dm,m] = 2p0p
m
f (1− pmf) + 2(1− p0)pmd (1− pmd).

Fig.6 depicts the expected distance with increasing p0 for
two helpers of same and different types. As we observe
in Fig.6, mostly the distance between two honest helpers
are significantly lower compared to honest-malicious helper
distance. In some region, e.g., low p0 and p0 ≈ 0.9, honest
and malicious helpers have similar sensing accuracy. For
example, for p0 = 0.1, we have the following sensing accuracy
values: pmd = 0.81 and pmf = 0.09 whereas phd = 0.9 and
phf = 0.08. In this case, it becomes more challenging to
distinguish malicious helpers from honest ones.

Let wi be the score of hi representing its distance11 from
other helpers. To ensure some robustness against malicious

11When we refer to distance between two helpers, we mean the distance
between the sensing report of the respective helpers.

9

1 2 3 4 5 6 7 8 9 10

Number of helpers, H

0.01

0.02

0.03

0.04

0.05

S
p

e
ct

ra
l

e
ff

ic
ie

n
cy

,
m
in

Hm =0

Hm =1

Hm =5

Hm =9

(a) Impact of number of helpers.

1 10 100 1000

Compression factor, β

0.02

0.03

0.04

0.05

0.06

0.07

S
p

e
ct

ra
l

e
ff

ic
ie

n
cy

,
m
in

Hm =0

Hm =1

Hm =2

Hm =4

(b) Impact of compression factor.

0.1 0.2 0.3 0.5 0.7 0.9

PU idle probability, p0

0.0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

P
ri

ce
 p

e
r

b
it

,
µ
m
in µeth=1µs

µeth=10µs
µeth=100µs

(c) Impact of PU p0.

Fig. 8. Required operation parameters for the SUN to profit from Spass. Required minimum spectral efficiency (a) under various number of malicious
helpers (Hm) with increasing number of helpers (H) and (b) under increasing compression factor β, (c) required minimum price of spectrum to charge the
SUN’s customers under various Ethereum usage cost µeth = {µs, 10µs, 100µs} and µs = 0.05, κ = 10, β = 10, and H = 5.

helpers, we compute wi as the η-percentile of the distances
of this helper from other helpers. The percentile value reflects
the expected fraction of honest helpers in the contract. Below,
we calculate wi as follows:

wi = Pη(di,j |∀j 6= i). (30)

Fig.7 depicts a toy example with five helpers, two being
malicious (h3 and h4) and sensing reports include 10 bits.
To calculate h0’s score, Spass calculates pairwise distances
and sort them in increasing order. Then, Spass takes the 50-
percentile in this example as a helper’s score. As h0 has similar
sensing reports with those of h1 and h2, its score is low. But,
malicious helper h4’s sensing score is much higher, i.e., 0.5.

CHI first clusters the scores using K-means algorithm into
K = 1 clusters. Then, CHI calculates inertia which represents
the spread of data points in a cluster from the cluster centroid.
Next, CHI runs K-means algorithm for K = 2 to consider
the possibility that there might be both honest and malicious
helpers in the SC. In the existence of malicious helpers, we
expect the honest helper scores to be clustered as well as the
malicious helper scores being close to each other representing
the second cluster. CHI uses this insight to decide on the
existence of malicious helpers. After computing the clusters
and inertia for K = 1 and K = 2, CHI checks if the difference
between the inertia for K = 1 and inertia for K = 2 is lower
than a threshold value, e.g., 0.05. If lower, CHI concludes that
there should be only one cluster, i.e., all helpers are honest.
Otherwise, CHI concludes two clusters and marks the helpers
in the cluster with lower values as honest and the rest as
malicious. CHI then adds the helpers in the malicious cluster
to the blacklisted helper list, which will neither get payments
nor be considered for sensing in further verification rounds.

IX. PERFORMANCE EVALUATION

We present our findings on the performance of Spass and
CHI via simulations using our in-house system level Python
simulator. Our goal is to address the following questions: (i)
under which parameters can the SUN maintain a profit by
Spass-based operation? (ii) how does compression factor and
number of malicious helpers affect the accuracy of CHI?

A. When is Spass a feasible business model?
The SUN has to ensure that ∆Υ>0 for a verification round

so that it will benefit from Spass. Using ∆Υ in (5), we derive a

closed formula which gives us the relationship between various
parameters of Spass as follows:

µκUv − (H − Ĥm,v)Rs(
µeth
β

+ µs) > 0. (31)

The SUN can use the above formula in many ways. For
example, if it has some statistics about the helpers’ price
and other costs, it can calculate how many helpers it can
pay or what is the minimum required spectral efficiency or
compression factor ensuring ∆Υ > 0.

Fig.8 plots the required operation parameters under a num-
ber of scenarios. Fig.8a and Fig.8b plot the required minimum
spectral efficiency κmin for which Spass can provide profit to
the SUN under Rs=1, µeth=0.1, µs=0.05, µ=1, and β=1. As
expected, with increasing number of helpers, SUN’s payment
to helpers both for sensing and Ethereum usage will increase.
Consequently, κmin will increase. Although the impact of
malicious helpers is not significant, higher number of mali-
cious helpers requires slightly higher κmin. Fig.8c shows the
minimum price per bps the SUN has to charge its customers
for maintaining balance between its cost and income. As
different p0 results in different bits per symbol according to our
analysis in Fig.5, we find χ bits per symbol for each p0 value
as in (28). Then, we use µeth = µethχ to reflect the lossless
compression on the sensing report. As Fig.8c shows, higher
Ethereum usage cost reflects itself in higher price for the
customers. With increasing spectrum availability, i.e., higher
p0, the SUN’s price will be lower.
Take-aways: Spass benefits slightly from decreasing the num-
ber of malicious helpers in the SCs and more significantly from
increasing compression factor.

B. Optimal number of helpers

We find the optimal number of helpers via exhaustive
search for P2 with µeth = χµeth to account also for lossless
compression. Fig.9a plots H0 for various p0 and ψ values
while Fig.9b plots the total profit. We have not included H1

in Fig.9a as it equals to H0 with ψ = 0. The optimal number of
helpers is independent of p0 if all helpers are honest. But, with
increasing probability of maliciousness, the SC has to admit
more helpers to ensure that the sensing outcome can satisfy
the regulatory requirements. Moreover, even if the malicious
helpers are excluded at the end of the first phase, there must
be still sufficient number of helpers in the SC.

10

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
PU idle, p0

0

2

4

6

8

10

12

O
p

ti
m

a
l

#
 o

f
h

e
lp

e
rs

H0 , ψ=0

H0 , ψ=0.1

H0 , ψ=0.15

(a) Optimal number of helpers.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

PU idle

0.0

500.0

1000.0

1500.0

2000.0

S
U

 n
e
t

p
ro

fi
t,

 E
u

ro
s

ψ=0

ψ=0.1

ψ=0.15

(b) SUN’s net profit.

Fig. 9. Impact of increasing p0 for various ψ values on (a) optimal number of helpers and (b) SUN’s net profit. Following parameters are used: Rs =
5, µeth = 0.1, µs = 0.05, µ = 1, and β = 10, κ = 10.

0 2 4 6 8 10 12 14 16 18 20

Number of malicious helpers

0.0

0.2

0.4

0.6

0.8

1.0

C
H

I
a
cc

u
ra

cy

qd , S=50

qf , S=50

qd , S=100

qf , S=100

qd , S=200

qf , S=200

(a) CHI accuracy for H = 20.

5 10 20 50 100 200

Number of sensing bits

0.0

0.2

0.4

0.6

0.8

1.0

C
H

I
a
cc

u
ra

cy

qd , Hm =0

qd , Hm =2

qd , Hm =10

qf , Hm =0

qf , Hm =2

qf , Hm =10

(b) Impact of S on accuracy.

Cluster of
honest helpers

Cluster of
malicious helpers

Missed
malicious
helpers

(c) Clusters for Hm=12 for H=20 and S=20.

Fig. 10. Accuracy of CHI with increasing number of malicious helpers for H = 20, p0 = 0.7, η=30. We repeat each simulation 1000 times.

0 2 4 6 8 10 12

Colluding malicious helpers

0.0

0.2

0.4

0.6

0.8

1.0

C
H

I
a
cc

u
ra

cy

qd , η=10

qd , η=20

qd , η=30

(a) Total Hm = 12 and H=20.

0 1 2 3 4 5 6 7 8 9 1
0 1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

Verification rounds

0.0

0.05

0.1

0.15

M
a
li

ci
o
u

s
u

se
r

fr
a
ct

.

β=1

β=10

β=100

(b) p0 = 0.7.

0 1 2 3 4 5 6 7 8 9 1
0 1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

Verification rounds

0.08

0.1

0.12

0.14

0.16

0.18

M
a
li

ci
o
u

s
u

se
r

fr
a
ct

.

β=1

β=10

β=100

(c) p0 = 0.9.
0 1 2 3 4 5 6 7 8 9 1
0 1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

Verification rounds

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

M
a
li

ci
o
u

s
u

se
r

fr
a
ct

.

β=1

β=10

β=100

(d) p0 = 0.1.

Fig. 11. Accuracy of CHI (a) under colluding malicious helpers, (b, c, d) over multiple verification rounds under different β = {1, 10, 100} for N = 40,
H = 8, Hm = 5, η = 30, inertia difference=0.02.

Take-aways: Number of helpers required increases under
higher PU channel availability and the malicious helper proba-
bility. However, since the amount of discovered spectrum also
increases, overall high PU channel availability region is the
desirable operation region for the SUN as seen in Fig.9b.

C. Accuracy of CHI with increasing ψ

Fig. 10 plots the accuracy of CHI with increasing number
of malicious helpers for H = 20 for various size of sensing
reports, i.e., S. We set η to 30 percentile in these scenarios.
Note that higher percentile is preferred for robustness of
CHI against collusion of malicious helpers. But, a lower η
performs better under higher Hm if malicious helpers are not
colluding. As Fig.10a shows, CHI succeeds in identifying ma-
licious helpers with very high accuracy if fraction of malicious
helper population is lower than (1−η/100). We observe almost
perfect detection (qd → 1) and no false alarms (qf → 0) for all
values for Hm < 14. When Hm > 14, a honest helper’s score
is dominated by the honest-malicious helper distance due to
(30). As a result, a honest helper’s score becomes very high,

similar to malicious helpers. Consequently, CHI detects only
a single cluster failing to identify malicious helpers. Given
that low malicious helper probability is more likely in real
world scenarios, we expect that CHI can identify almost all
malicious helpers with a high accuracy in a single verification
round. Moreover, if we consider multiple verification rounds,
performance of CHI improves with each new round as a big
fraction of malicious helpers are excluded from the system
thereby resulting in a regime where the malicious helper
population is lower. Hence, we expect CHI to identify all
malicious helpers in only a few verification rounds.

Fig.10b plots the impact of number of sensing bits S on
the accuracy of CHI for various Hm. Lower S results in
higher false alarms, particularly in case where there are low
number of malicious helpers, e.g., Hm = 0. As Spass aims
at minimizing false alarms, S must be larger than 50, e.g.,
100 bits, in this example. Finally, we plot the clusters of
helper scores for K = 2 in an example setting in Fig. 10c. In
this example, there are 12 malicious helpers and 10 of them
are detected by CHI when S=20 bits. In case K = 1 (not

11

0 20 40 60 80 100
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

D
o
w

n
li

n
k
 t

ra
ff

ic
 l

o
a
d

(a) An LTE eNodeB’s downlink traffic load consid-
ering the number of allocated resource blocks.

0 1 2 3 4 5 6 7 8 9 1
0 1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

Verification rounds

0.0

0.1

0.2

0.3

0.4

M
a
li

ci
o
u

s
u

se
r

fr
a
ct

.

Nm=5, β=1

Nm=5, β=10

Nm=5, β=100

Nm=15, β=1

Nm=15, β=10

Nm=15, β=100

(b) Malicious helper fraction in the SC.

0 1 2 3 4 5 6 7 8 9 1
0 1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

Verification rounds

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1.0

P
d
 o

f
d

e
te

ct
io

n

Nm=5, β=1

Nm=5, β=10

Nm=5, β=100

Nm=15, β=1

Nm=15, β=10

Nm=15, β=100

(c) Malicious helper detection accuracy.

Fig. 12. Performance of Spass under realistic PU traffic load data for N=40, H = 8.

plotted), the inertia is markedly higher and CHI concludes
that there must be two clusters, one for honest helpers and
one for malicious helpers as depicted in Fig.10c.

To understand the impact of η and number of colluding ma-
licious helpers, we simulate a scenario where Hcol

m malicious
helpers generate the same sensing data to achieve a low score.
In case of low η, which is preferable for robustness against a
high fraction of uncoordinated malicious helpers, it is easier
for malicious helpers to form a collusion group with only a few
others and maintain a low score which will help such helpers
remain undetected by CHI. Fig.11a shows the impact of in-
creasing collusion group. As we observe in Fig.11a, increasing
Hcol
m decreases CHI’s accuracy in detecting malicious helpers

and increases falsely blacklisted honest helpers (not plotted).
Higher η values are more robust compared to smaller η as the
latter requires a smaller collusion group for a low score.
Take-aways: When malicious helpers are independent attack-
ers, CHI can identify them with almost perfect accuracy even
when malicious helpers are the majority. Under increasing
number of colluding malicious helpers, CHI is more robust
if a higher η value is used for calculating score of each
helper. By tuning η, CHI can set the desired trade-off between
robustness against colluding malicious helpers and robustness
against independent malicious helpers. Moreover, the sensing
report should be long enough (e.g., 100 bits in the considered
example) to avoid blacklisting honest helpers.

D. Performance of Spass over multiple verification rounds

Next, we relax our identical sensing accuracy assumption
for honest helpers and use the following distributions: phd ≈
U(0.80, 0.95) and phf ≈ U(0.05, 0.15). As we see in Fig.11b,
although the SC might initially have malicious helpers (18%
of helpers), after the first round it is only 3% of the helpers.
At the end of each verification round, the helpers identified as
malicious are excluded from the SC and new ones are selected
to replace these excluded ones. Only after two rounds, the
sensing contract becomes malicious-helper-free owing to high
success of CHI in identifying abnormal behavior. Moreover,
CHI never blacklists a honest helper (figure not plotted).
Even though there are malicious helpers in the SC initially,
Spass achieves a very high performance in identifying the
spectrum opportunities, e.g., pf ∼ 0.01 (not plotted). When
p0 ≈ 0.9 or p0 ≈ 0.1, CHI performs with lower detection

accuracy: there are malicious helpers in the SC as observed
in Fig.11c and Fig.11d, respectively. But, no honest helper is
blacklisted for p0 ≈ 0.9 and it is only 2% under β = 100
for p0 ≈ 0.1. While a spectrum band with p0 ≈ 0.1 is
not usually considered for opportunistic spectrum access due
to very high PU activity in the band, the later case with
p0 ≈ 0.9 is a desirable setting where there is plenty of
spectrum holes for the SUN to utilize. Hence, Spass can use
more advanced algorithms such as multi-dimensional k-means
clustering rather than CHI which applies clustering on one-
dimensional helper scores. Note also that helper scores are
affected by parameters inertia threshold and η. Interestingly,
Fig.11c and Fig.11d show that a higher β results in a higher
detection probability for CHI. We attribute this behavior to the
distortion introduced by lossy compression. Two helper reports
start to diverge from each other under lossy compression which
then helps differentiating honest and malicious helpers. Recall
that malicious helpers only know p0 and therefore can only
approximate its sensing accuracy to the expected p0 if the
sensing report is long. The honest helpers are not significantly
affected by the distortion due to compression as they sense
the spectrum and hence in short or long term their sensing
outcomes agree with other honest helpers. As a result, we do
not observe an increase in blacklisted honest helpers.
Take-aways: For 0.1<p0<0.9, time that a malicious helper
stays in a contract is only one or two verification rounds.
Hence, Spass can have a payment policy in the SC definition
that each helper will be paid only after it stays in the SC
for at least two rounds. As a result, malicious helpers will
be discouraged to join the SC as it is very unlikely that they
will be able to stay at the SC. For p0 ≈ 0.1 and p0 ≈ 0.9,
Spass might benefit from lossy compression. But, it takes
more verification rounds to detect all malicious helpers. Yet,
Spass achieves high sensing accuracy in terms of pd and pf ,
the latter of which determines the net utility of the SUN.
Hence, despite the existence of malicious helpers, an SUN
can maintain a high net profit for p0 ≈ 0.9.

E. Performance of Spass under a realistic PU model

To evaluate the performance of our scheme under a more
realistic PU model, we use the data provided in [29] which
shows the change in the downlink traffic of an LTE eNodeB.
The normalized load depicted in Fig.12a represents the fraction

12

of the OFDM resource blocks scheduled for the cell traffic.
We use the normalized load as (1 − p0) in our model and
generate PU activity using this probability for a certain time
period. Each malicious helper observes the channel for an
initial period corresponding to 10% of the whole trace and
computes the average load of the channel. During this sensing
phase, malicious helpers do not participate in Spass. Using
this average load information, a malicious helper generates
its sensing report. Each malicious helper observes a different
period of the PU channel which is randomly picked from the
trace. Consequently, malicious helpers might have a different
perception of the average PU load. Also note that a single
value for PU traffic falls short of representing the PU activity
which shows spikes as in Fig.12a. On the other hand, the hon-
est helpers operate as usual; they sense the spectrum and report
their sensing outcome which might be inaccurate with some
probability, i.e., pd ∼ U(0.80, 0.95) and pf ∼ U(0.05, 0.15).
We assume N = 40, H = 8 helpers, and Hm = {5, 15}
independent malicious attackers.

As Fig.12b shows, the SC has a decreasing number of
malicious helpers with each verification round. For lower Hm,
almost all malicious helpers are detected after 5 rounds. For
Hm = 15, the SC might include the malicious helpers (5-6%)
whose observation gives a reasonable estimate of p0. Also,
note that the considered PU model in Fig.12a operates during
some time period in the region where CHI is not expected
to be highly accurate due to very similar honest-honest and
honest-malicious distance (cf. to Fig. 6). In agreement with
our analysis in Fig.11c and Fig.11d, we observe that higher
compression factor results in a better performance in terms
of malicious helper detection accuracy which comes also
with a higher probability of blacklisting honest helpers (not
plotted). Fig.12c shows the increase in detection accuracy
with each verification round facilitated by lower number of
malicious helpers remaining in the system. For Hm = 15 and
β = {1, 10}, detection accuracy stabilizes around 89% while
the false alarm is zero.

X. CONCLUSIONS

This paper introduces Spass which is a proposal for realizing
spectrum sensing as a service in an untrusted and decentralized
setting. Spass offers opportunistic spectrum discovery with
high sensing accuracy to the MNOs who want to extend their
licensed spectrum with secondary spectrum. Moreover, it of-
fers payments to the sensing nodes as a compensation for their
sensing service for the MNOs. Spass achieves its promises via
smart contracts running on a blockchain network. We have
examined thoroughly the entailed costs and impact of various
parameters including cost of using Ethereum, probability that
the PU channel is idle, and the number of malicious helpers.
Our analysis shows that a feasible business model to the MNOs
under a wide range of settings can be provided. As future
work, we will consider malicious helpers who might optimize
their strategy to remain undetected.

REFERENCES

[1] “President’s Chamber decision of 14 May 2018 on the order for and
choice of proceedings for the award of spectrum in the 2 GHz and

3.6 GHz bands for mobile/fixed communication networks (MFCN).”
[Online]. Available: https://www.bundesnetzagentur.de/, accessed on
March 16, 2019

[2] M. Aditya, A. Raghuvanshi, and G. S. Kasbekar, “Price competition in
spectrum markets: How accurate is the continuous prices approxima-
tion?” IEEE Trans. on Cognitive Comm. and Nw., vol. 4, no. 4, pp.
773–86, 2018.

[3] A. Chakraborty et al., “Spectrum patrolling with crowdsourced spectrum
sensors,” in IEEE Conf. on Computer Comm.(INFOCOM), 2018.

[4] A. Chakraborty, M. S. Rahman, H. Gupta, and S. R. Das, “Specsense:
Crowdsensing for efficient querying of spectrum occupancy,” in IEEE
Conf. on Computer Comm. (INFOCOM), 2017.

[5] R. Zhang, J. Zhang, Y. Zhang, and C. Zhang, “Secure crowdsourcing-
based cooperative spectrum sensing,” in IEEE INFOCOM, 2013.

[6] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for
the Internet of Things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[7] N. Szabo, “The idea of smart contracts,” 1997. [Online]. Available:
http://szabo.best.vwh.net/smart contracts idea.html

[8] S. Bayhan, A. Zubow, and A. Wolisz, “Spass: Spectrum sensing as a
service via smart contracts,” in IEEE DYSPAN, 2018.

[9] X. Jin and Y. Zhang, “Privacy-preserving crowdsourced spectrum sens-
ing,” IEEE/ACM Trans. on Nw., vol. 26, no. 3, pp. 1236–49, 2018.

[10] A. Nika, Z. Zhang, X. Zhou, B. Y. Zhao, and H. Zheng, “Towards
commoditized real-time spectrum monitoring,” in ACM Workshop on
Hot Topics in Wireless, ser. HotWireless’14, 2014, pp. 25–30.

[11] A. Saeed, K. A. Harras, E. Zegura, and M. Ammar, “Local and low-cost
white space detection,” in IEEE International Conference on Distributed
Computing Systems (ICDCS), 2017, pp. 503–516.

[12] D. Yuan, G. Li, Q. Li, and Y. Zheng, “Sybil defense in crowdsourcing
platforms,” in Proceedings of the 2017 ACM on Conference on Infor-
mation and Knowledge Management. ACM, 2017, pp. 1529–1538.

[13] W. Feng et al., “A survey on security, privacy, and trust in mobile
crowdsourcing,” IEEE Internet of Things Journal, vol. 5, no. 4, pp.
2971–2992, 2017.

[14] N. Marchang, A. Taggu, and A. K. Patra, “Detecting byzantine attack in
cognitive radio networks by exploiting frequency and ordering proper-
ties,” IEEE Transactions on Cognitive Communications and Networking,
vol. 4, no. 4, pp. 816–824, 2018.

[15] M. Li et al., “CrowdBC: A Blockchain-based Decentralized Framework
for Crowdsourcing,” IEEE Trans. on Parallel and Distr. Sys., 2018.

[16] X. Ying, S. Roy, and R. Poovendran, “Pricing mechanisms for crowd-
sensed spatial-statistics-based radio mapping,” IEEE Trans. on Cognitive
Comm. and Nw., vol. 3, no. 2, pp. 242–254, June 2017.

[17] S. Delgado-Segura, C. Tanas, and J. Herrera-Joancomartí, “Reputation
and reward: two sides of the same bitcoin,” Sensors, vol. 16, no. 6, p.
776, 2016.

[18] D. Chatzopoulos, S. Gujar, B. Faltings, and P. Hui, “Privacy preserv-
ing and cost optimal mobile crowdsensing using smart contracts on
blockchain,” IEEE Int. Conf. on Mobile Ad-hoc and Sensor Sys., 2018.

[19] Y. Lu, Q. Tang, and G. Wang, “ZebraLancer: Private and Anonymous
Crowdsourcing System atop Open Blockchain,” in IEEE Int. Conf. on
Distributed Computing Systems (ICDCS), July 2018, pp. 853–865.

[20] H. Li and Z. Han, “Catch me if you can: An abnormality detection
approach for collaborative spectrum sensing in CRNs,” IEEE Trans. on
Wireless Communications, vol. 9, no. 11, pp. 3554–3565, 2010.

[21] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, pp. 1–32, 2014.

[22] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016, pp. 254–269.

[23] S. Hu et al., “Searching an encrypted cloud meets blockchain: A
decentralized, reliable and fair realization,” IEEE INFOCOM, 2018.

[24] Ofcom, “Enabling opportunities for innovation shared access to
spectrum supporting mobile technology,” Dec.18, 2018. [Online].
Available: https://www.ofcom.org.uk/, accessed on March 16, 2019

[25] T. Salman, M. Zolanvari, A. Erbad, R. Jain, and M. Samaka, “Security
services using blockchains: A state of the art survey,” IEEE Communi-
cations Surveys & Tutorials, 2018.

[26] K. W. Sung, S.-L. Kim, and J. Zander, “Temporal spectrum sharing
based on primary user activity prediction,” IEEE Transactions on
Wireless Communications, vol. 9, no. 12, pp. 3848–3855, 2010.

[27] GSMA, “5g spectrum gsma public policy position,” Nov. 2018.
[28] S. R. Kulkarni, “Chapter 8: Information, entropy, and coding,”

https://bit.ly/2zXAqE0, November 2018.
[29] N. Bui and J. Widmer, “Data-driven evaluation of anticipatory network-

ing in LTE networks,” IEEE Transactions on Mobile Computing, vol. 17,
no. 10, pp. 2252–2265, 2018.

13

Suzan Bayhan is a Docent in Computer Science at University of Helsinki
since March 2017. Suzan got her Ph.D. in Computer Engineering from
Bogazici University in 2012 and worked as a postdoctoral researcher at
University of Helsinki between 2012-2016, and as a senior researcher at TU
Berlin between 09/2016-09/2019. She was a visiting researcher at Princeton
University (04/2016) and Aalto University (03/2019). She received Google
EMEA Anita Borg scholarship in 2009, a Best Paper Award at ACM ICN
2015, and acted as a N2Women mentoring co-chair during 2017-2018. Suzan
conducted research on mobile opportunistic networks, cognitive radio and
spectrum sharing, and information-centric networks. Her current research
interests include resource allocation for wireless networks, spectrum sharing,
and edge computing. She will join University of Twente as an Assistant
Professor on September 2019.

Anatolij Zubow received his M.Sc. in computer science (2004) and
Ph.D.(2009) from Humboldt University Berlin. He is Interim (Gast-) Professor
of Electrical Engineering and Computer Science at the chair for Telecom-
munication Networks (TKN), Technische Universität Berlin, since October
2018. His research interests are in architectures and protocols of wireless
communication networks as well as in protocol engineering with impact on
performance and QoS aspects. Recently he is focusing mainly on coexis-
tence of heterogeneous wireless technologies in unlicensed spectrum, high-
performance IEEE 802.11 networks, software-defined wireless networking and
ultra-reliable low latency communication.

Piotr Gawłowicz is a researcher at TKN Group at TU Berlin, Germany.
He received his M.Sc. and B.Sc. degrees in telecommunications from AGH
University of Science and Technology, Kraków, Poland in 2014 and 2012,
respectively. In the past, he visited Panasonic R&D Center Germany and
Nokia R&D in Wrocław, Poland, where he worked on projects for future
mobile networks and enhancements for LTE-A. Under the Google Summer
of Code 2014 program, he contributed to the development of the ns-3
network simulator. At TKN, he has been involved in national and European
research projects. His research interests include coexistence and collaboration
of heterogeneous wireless systems, cross-technology communication, and
recently reinforcement learning in the networking area. He has extensive
experience in simulating and prototyping of wireless solutions.

Adam Wolisz received his degrees (Diploma 1972, Ph.D. 1976, Habil. 1983)
from Silesian University of Technology, Gliwice. He joined Technical Univer-
sity of Berlin in 1993, where he is a Chaired Professor in telecommunication
networks and Executive Director of the Institute for Telecommunication
Systems. He is also an Adjunct Professor at the Department of Electrical
Engineering and Computer Science, University of California, Berkeley. He
has been a Fellow at the Einstein Center Digital Future (ECDF) since
October 2018. His research interests are in architectures and protocols of
communication networks. He is an IEEE Senior Member.

