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High variation in a cellular network’s load

Xu, F., Li, Y., Wang, H., Zhang, P., Jin, D.: Understanding mobile traffic patterns of large scale cellular towers in 
urban environment. IEEE/ACM TON, 2017. !2

Capacity expansion via secondary spectrum rather 
than costly capacity over-provisioning

~8x

Need for over-provisioning
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Crowd-sourcing based spectrum-discovery 
• Rather than deploying its own infrastructure, the MNO 

launches crowd-sensing campaign
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Applications of crowd-sourcing based 
spectrum sensing

• Spectrum monitoring for better policy making 

• Spectrum patrolling for detecting spectrum misuse 

– Chakraborty et al. Spectrum patrolling with crowdsourced spectrum sensors, IEEE 
INFOCOM 2018 

• Radio Environment Map generation and spectrum queries 

– Chakraborty et al. Specsense: Crowd-sensing for efficient querying of spectrum 
occupancy, IEEE INFOCOM 2017 

– Ying et al. Pricing mechanism for quality-based radio mapping via crowdsourcing, 
IEEE GLOBECOM 2016
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PoMeS: crowd-sourcing based spectrum discovery 
for MNO capacity expansion
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PoMeS: profit-maximizing sensor selection
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PoMeS: profit-maximizing sensor selection
• How many sensors to use for spectrum 

discovery? 

– Monetary cost of spectrum sensing 

– A limited budget for crowd-
sensors 

– Expected traffic in each cell 

• Hot spot cells vs cold spot cells 

• Varying expected PU traffic  

– Required sensing accuracies 
asserted by the regulatory bodies
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Goal: maximize the profit while 
meeting the regulatory requirements
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• Regulations: might be overly-conservative 
resulting in wasteful sensing by the sensors 

– High PU detection accuracy (>0.90) 

– Low false alarm probability (<0.10) 

• Oblivious to the PU traffic or secondary 
network’s traffic
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Goal: maximize the profit while 
meeting the regulatory requirements

!7

• Regulations: might be overly-conservative 
resulting in wasteful sensing by the sensors 

– High PU detection accuracy (>0.90) 

– Low false alarm probability (<0.10) 

• Oblivious to the PU traffic or secondary 
network’s traffic

PoMeS: different accuracy at each cell, but 
monetary penalty if the required accuracy not met
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Spectrum-sensing model
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• PU statistics are available at the MNO 

• Sensor accuracies are identical and Pd, Pf known by the MNO 

• Sensors’ sensing price is identical 

• Majority decision combining 

• Sensing period, reporting period

Sensing 
period

TDMA 
reporting 

period

Transmission period in case 
of idle spectrum

T

MAJORITY 
LOGIC
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MNO’s net profit
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MNO’s net profit
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Expenses for crowd-
spectrum sensing 

Penalty paid if 
spectrum sensing 

accuracy is lower than 
required

 
from its customers 
served through the 

discovered spectrum

Demand in each cell 
Discovered spectrum in each cell 

Price of each served request

Sensing cost Collision cost Income
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Utility of spectrum sensing with m sensors

• Utility U(m): expected discovered and useable spectrum if m 
sensors sense the spectrum

!12

Probability that PU 
channel is idle

PU channel’s 
bandwidth (Hz)

Sensing efficiency 
(after overheads of 

sensing and reporting)

Probability of false 
alarms in sensing 

𝒰(m) = poB ( T − Ts − mTr

T )(1 − Qf(m))
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How many requests can be served with 
this discovered spectrum?
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Number of requests in 
this cell-i

Required minimum resources per request

Spectral efficiency of the 
MNO

Rmax
i = min(ri,

𝒰iκ
cmin

). requests/sec

Discovered spectrum 
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Income of cell-i

• Each served request translates into some monetary gain
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Service cost paid for each served request

Rmax
i = min(ri,

𝒰iκ
cmin

). requests/sec

Π+
i = μRmax

i
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Expenses of cell-i : sensing cost
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Unit sensing price

Frequency of 
sensing

Number 
of sensors

Π−
i = Niμsβs

Sensing cost Collision penalty cost

ΔQd,i = max(0,Q*d − Qd,i)

μcΔQd,iRi
max

Penalty 
price

Difference between 
the desired and 
achieved sensing 

accuracy
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Optimal sensor selection problem
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Available budget for 
sensors

max
Ni

∑
Ai∈𝒜

Rmax
i μ − Niμsβs − μcRmax

i max(0,ΔQd,i − Q*)

∑
Ai∈𝒜

μsβsNi ⩽ ℬ

Ni ⩽ ⌊
T − Ts
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Optimal sensor selection problem

!16

Available budget for 
sensors

max
Ni

∑
Ai∈𝒜

Rmax
i μ − Niμsβs − μcRmax

i max(0,ΔQd,i − Q*)

∑
Ai∈𝒜

μsβsNi ⩽ ℬ

Ni ⩽ ⌊
T − Ts

Tr
⌋

Ni ⩾ 0Coupling constraint. NP-hard! 
De-couple via allocating the budget first. 

(i) budget allocation problem (ii) exhaustive search in each cell
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Polynomial complexity: 

EQ, PROP:  

INGA: 

• Equal budget per cell (EQ):  

• # of sensors upper-bounded by: 

• PROP: Budget proportional to the 
serving capacity of the cell 

• Incremental gain based greedy 
assignment (INGA) 

• Baselines: 

• satisfying (Q∗
d,Q∗

f) required by 
the regulatory body (REG) with 
EQ or PROP budget allocation

udget allocation for K cells
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Nmax = min(⌊
T − Ts

Tr
⌋, ⌊

ℬ
Kμsβs

⌋)

ℬ

ℬi =
Rmax

i ℬ
∑Ai∈𝒜 Rmax

i

𝒪(KNmax)

𝒪(KN log(N))
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Simulation-based performance analysis 
of PoMeS
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• Impact of increasing budget 

• Impact of cell traffic load 

• Impact of hot-spots (cell-load variation)
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Parameters

• K = 2000 cell sites  

• PU activity = [0.2, 0.8] 

• μs = 1, μ = 1, μc = 5,  

• κ = 10 bps/Hz, (Pd,Pf)=(0.8, 0.1), and (Q∗d,Q∗f )= (0.98, 0.05) 

• Randomly σ of the cells as hotspots 

• Rσ fraction of the requests from hotspots 

• Coldspot traffic: (1-Rσ) fraction of the requests

!19
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Impact of budget: B = [1-10] sensors/cell 
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Impact of budget: B = [1-10] sensors/cell 
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~2x

~0x

Saturation in profit due to diminishing returns: 
deploying more sensors only increases the capacity 

marginally
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Impact of budget: B = [1-10] sensors/cell 
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Under low budget, sacrifice 
from sensing accuracy
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Which cells enjoy the capacity expansion? 
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Which cells enjoy the capacity expansion? 
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Low budget: capacity expansion over all cells with our 
heuristics 

17% of the cell sites vs 65-100%
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Impact of cell-load
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Impact of cell-load
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- INGA > PROP or EQ by about 5% 

- REG-EQ over-performs REG-PROP for about (5-15%) depending on 
the setting 

- Lower sensing accuracy only under low load 
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Impact of hot-spots
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Jain’s fairness index in terms of cell load 
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Impact of hot-spots

!25

• Under a more uniform traffic load, profit is higher 

• The relative performance of our schemes exhibit the same trend

Jain’s fairness index in terms of cell load 
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Take-aways
• Problem:  

• Capacity over-provisioning results in a high cost at an MNO 
• PoMeS:  

• Capacity expansion via opportunistic spectrum access 
• Crowd-sourced spectrum sensing 
• Select sensors considering MNO’s net profit 

• Load of each cell, PU spectrum activity, required spectrum 
sensing accuracy, each sensor’s cost and accuracy 

• Key results 
• Lower sensing accuracy only when the network load is low and 

budget for spectrum sensing payment is limited 
• Distributing the budget equally for regulation-confirming schemes 

results in higher profit 
• Future work: heterogenous sensors in terms of accuracy and cost
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Thank you


