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-"E High variation in a cellular network’s load

x10"

9F =
0
D gL
>
£ .l
S
O 6_ N
b
: ] SRS S
(%2}
2L 4y
3
= 3
L
=
5 2
S
=

0

5 10_ 15 20
Time (hour)

Xy, F, Li, Y., Wang, H., Zhang, P., Jin, D.: Understanding mobile traffic patterns of large scale cellular towers in
urban environment. IEEE/ACM TON, 2017. PoMeS 2/25



-'E High variation in a cellular network’s load

x10"

9F =
0
D gL
>
£ .l
S
O 6_ N
= LEEA R R R RN R RN E RN REERES NN NN NN RN RNN N UNVN VN NSNS NN NS NN ]
] e R
(%2}
2L 4y
3
= 3
L
=
5 2
S
=

0

5 10_ 15 20
Time (hour)

Xu, F, Li, Y., Wang, H., Zhang, P., Jin, D.: Understanding mobile traffic patterns of large scale cellular towers in
urban environment. IEEE/ACM TON 2017. PoMeS  2/25



-'.E High variation in a cellular network’s load

BBBBBB

| ~8x
?;i : Need for over-provisioning

Traffic

Xy, F, Li, Y., Wang, H., Zhang, P., Jin, D.: Understanding mobile traffic patterns of large scale cellular towers in
urban environment. [EEE/ACM TON, 2017. PoMeS 2/25



-"E High variation in a cellular network’s load
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Capacity expansion via secondary spectrum rather
than costly capacity over-provisioning
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-llﬁ Crowd-sourcing based spectrum-discovery
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e Rather than deploying its own infrastructure, the MNO

launches crowd-sensing campaign

' Spectrum sensor
(===, selected for sensing
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Crowd-sourcing Spectrum Sensing
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-.lﬁ Applications of crowd-sourcing based
spectrum sensing

e Spectrum monitoring for better policy making

e Spectrum patrolling for detecting spectrum misuse

— Chakraborty et al. Spectrum patrolling with crowdsourced spectrum sensors, IEEE

INFOCOM 2018

 Radio Environment Map generation and spectrum queries

— Chakraborty et al. Specsense: Crowd-sensing for efficient querying of spectrum
occupancy, [EEE INFOCOM 2017

— Ying et al. Pricing mechanism for quality-based radio mapping via crowdsourcing,

IEEE GLOBECOM 2016
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-1  Applications of crowd-sourcing based
spectrum sensing

e Spectrum monitoring for better policy making

e Spectrum patrolling for detecting spectrum misuse

— Chakraborty et al. Spectrum patrolling with crowdsourced spectrum sensors, IEEE

INFOCOM 2018

 Radio Environment Map generation and spectrum queries

— Chakraborty et al. Specsense: Crowd-sensing for efficient querying of spectrum

PoMeS: crowd-sourcing based spectrum discovery
for MNO capacity expansion
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- | PoMeS: profit-maximizing sensor selection
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=M  Goal: maximize the profit while
meeting the regulatory requirements

e Regulations: might be overly-conservative
resulting in wasteful sensing by the sensors

— High PU detection accuracy (>0.90)

— Low false alarm probability (<0.10)

e Oblivious to the PU traffic or secondary
network’s traffic
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-I.E Goal: maximize the profit while
meeting the regulatory requirements

e Regulations: might be overly-conservative
resulting in wasteful sensing by the sensors

— High PU detection accuracy (>0.90)

— Low false alarm probability (<0.10)

e Oblivious to the PU traffic or secondary

network’s traffic

PoMeS: different accuracy at each cell, but
monetary penalty if the required accuracy not met
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- ] Spectrum-sensing model

e PU statistics are available at the MNO
e Sensor accuracies are identical and Pd, Pf known by the MNO
e Sensors’ sensing price is identical
* Maijority decision combining

e Sensing period, reporting period

MAJORITY
LOGIC

Sensing TDMA  Transmission period in case

period reporting of idle spectrum

period
PoMeS
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MNOQO’s net profit
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MNO’s net profit
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ﬂs MNOQO’s net P rofit
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-l.s Utility of spectrum sensing with m sensors

o Utility U(m): expected discovered and useable spectrum if m

sensors sense the spectrum

T—T,—mT,
U(m) = p,B ( ><1 — 0/(m))

Probability that PU
channel is idle

PU channel’s

T

Vs

bandwidth (Hz)

(&

Sensing efficiency
(after overheads of

sensing and reporting)

\

Probability of false
alarms in sensing

(&

~
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«0)  How many requests can be served with

Berlin

this discovered spectrum?

Spectral efficiency of the
Discovered spectrum MNO
U x

R = min(r;, —). requests/sec

Cmin

Number of requests in
this cell-i

{ Required minimum resources per request }
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-"E Income of cell-i

* Each served request translates into some monetary gain

. .K
R"** = min(r,, ——). requests/sec

Cmin

+ — max
/\
[ Service cost paid for each served request }
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[ Sensing cost j

;=N

Expenses of cell-i :

i:usﬂ )
Number
of sensors

sensing cost

[ Collision penalty cost ]

/’tcAde max

Frequency of
sensing
[Uni’r sensing price

i

Penal’ry
price

Difference between
the desired and
achieved sensing

accuracy

AQd,i = maX(O,Q* le
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-I'E Optimal sensor selection problem

max Z Ry — Nypuypo — u R™ max(0,AQ,; — 0%)

Available budget for
Z Iusﬂsjvi < 9B % sensors
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Available budget for
Z Iusﬂsjvi < 9B % sensors

Coupling constraint. NP-hard!

De-couple via allocating the budget first.
(i) budget allocation problem (ii) exhaustive search in each cell

FoMeo
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-I'E SBudget allocation for K cells

* Equal budget per cell (EQ):

T, . &
il

T, Ky
PROP: Budget proportional to the RMax g
l

serving capacity of the cell RB. =

L max
zAl-eeszf Rl

D

* # of sensors upper-bounded by: N,,,, = min(|

Incremental gain based greedy

assignment (INGA
g ( ) Polynomial complexity:

EQ, PROP: O(KN,
* satisfying (Q,,Q-,) required by ( max)

the regulatory body (REG) with |NGA: @(KN lOg(N))
EQ or PROP budget allocation

* Baselines:
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Simulation-based performance analysis

of PoMeS

* Impact of increasing budget
\/ 1 e Impact of cell traffic load

e Impact of hot-spots (cell-load variation)

PoMeS 18/25



-"E Parameters

K = 2000 cell sites
PU activity = [0.2, 0.8]

US:],H:],UC:5,

K = 10 bps/Hz, (Pd,Pf)=(0.8, 0.1), and (Q*4,Q*f )= (0.98, 0.05)

Randomly O of the cells as hotspots

RO fraction of the requests from hotspots

Coldspot traffic: (1-Rg) fraction of the requests

PoMeS
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Saturation in profit due to diminishing returns:
deploying more sensors only increases the capacity
marginally

TOIVZCO = 17 5
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“E ImpCIC'l' of budge’r: B = [1-10] sensors/cell
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-l.s Which cells enjoy the capacity expansion?
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Low budget: capacity expansion over all cells with our
heuristics

17% of the cell sites vs 65-100%




-'.E Impact of cell-load
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-'.E Impact of cell-load

(-
(@]
250.0 43 0.98!
Q
200.0 [
= S 0.96}
S -
© 150.0 o
2 %3 0.94
i)
® 100.0 -®- EQ > —&- EQ
= B INGA = 0.9 ~m- INGA
50.0 —%— PROP 3 —*— PROP
y —e— REG-EQ g —&— REG-EQ
0.0l v REG-PROP | D;:: 0.9} | | | | | | | REG-PROP A
O © ® ® OO 0.0 0 90 O LRSI RSP ARIL D
SRR P A v I NG L NI

Average requests per cell Average requests per cell

- INGA > PROP or EQ by about 5%

- REG-EQ over-performs REG-PROP for about (5-15%) depending on
the setting

- Lower sensing accuracy only under low load




-'.E Impact of hot-spots

Jain’s fairness index in terms of cell load
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 Under a more uniform traffic load, profit is higher

e The relative performance of our schemes exhibit the same trend
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-"E Take-aways
* Problem:
* Capacity over-provisioning results in a high cost at an MNO
* PoMeS:
* Capacity expansion via opportunistic spectrum access
* Crowd-sourced spectrum sensing
* Select sensors considering MNQO'’s net profit
* Load of each cell, PU spectrum activity, required spectrum
sensing accuracy, each sensor’s cost and accuracy
* Key results
* Lower sensing accuracy only when the network load is low and
budget for spectrum sensing payment is limited
* Distributing the budget equally for regulation-confirming schemes
results in higher profit

* Future work: heterogenous sensors in terms of accuracy and cost 15
ome
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