
ExEC: Elastic Extensible Edge Cloud
Aleksandr Zavodovski

University of Helsinki, Finland
Nitinder Mohan

University of Helsinki, Finland
Suzan Bayhan

TU Berlin, Germany

Walter Wong
University of Helsinki, Finland

Jussi Kangasharju
University of Helsinki, Finland

Abstract
Edge computing (EC) extends the centralized cloud computing para-
digm by bringing computation into close proximity to the end-users,
to the edge of the network, and is a key enabler for applications
requiring low latency such as augmented reality or content delivery.
To make EC pervasive, the following challenges must be tackled:
how to satisfy the growing demand for edge computing facilities,
how to discover the nearby edge servers, and how to securely ac-
cess them? In this paper, we present ExEC, an open framework
where edge providers can offer their capacity and be discovered
by application providers and end-users. ExEC aims at the unifica-
tion of interaction between edge and cloud providers so that cloud
providers can utilize services of third-party edge providers, and
any willing entity can easily become an edge provider. In ExEC,
the unfolding of initially cloud-deployed application towards edge
happens without administrative intervention, since ExEC discovers
available edge providers on the fly and monitors incoming end-user
traffic, determining the near-optimal placement of edge services.
ExEC is a set of loosely coupled components and common prac-
tices, allowing for custom implementations needed to embrace
the diverse needs of specific EC scenarios. ExEC leverages only
existing protocols and requires no modifications to the deployed
infrastructure. Using real-world topology data and experiments
on cloud platforms, we demonstrate the feasibility of ExEC and
present results on its expected performance.

1 Introduction
The introduction of cloudlets [33] and fog [11] served as a starting
point for the recent developments in edge computing (EC), pushing
it as a key enabler for technologies such as Internet-of-Things (IoT),
and augmented reality. By bringing the edge servers near end-users,
novel applications and services requiring very low latencies have
become feasible, and the growing popularity of such applications
is pushing the development of EC further.

The benefits of EC are well understood, and some key challenges
such as edge server placement have been addressed, e.g. [13]. In
most of the previous work, the cloud provider is assumed to have
full control over the edge servers. However, we envision a more
realistic setting in which any entity can offer their computation
capacities for running edge applications and services, and become
what we call an independent edge provider (IEP). Indeed, telecom

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
EdgeSys ’19, March 25, 2019, Dresden, Germany
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6275-7/19/03. . . $15.00
https://doi.org/10.1145/3301418.3313941

operators are actively planning for deployment of Multi-access
Edge Computing (MEC) [16] infrastructure. Also, new crowdsourc-
ing platforms have emerged, e.g., [19, 22], having most of their
resources at the edge of the network, exactly where the new EC
applications would require them. Furthermore, [18, 28] suggest
unleashing underutilized computational capacity of smart devices
to be used for EC purposes. In all previous cases, the cloud provider
will be agnostic of available IEPs and needs a specificmeans for sym-
biotic interaction with them. Such interaction consists of i) discov-
ery of IEPs ii) negotiation with IEPs on the deployment of services
iii) entering into a contractual agreement with IEPs iv) securely
deploying and running the edge services.

In this paper, we propose ExEC, Elastic Extensible Edge Cloud
platform to handle the set of tasks presented above, emphasizing the
discovery aspect. To illustrate the motivation behind ExEC with an
example, we assume the following scenario. An application provider
deploys an application composed of both back-end and front-end
services (edge) to some cloud facility located in the Northern US. As
the popularity of the service grows, user crowds from the other half
of the earth, e.g., Southeast Asia, subscribe to the application. The
cloud provider offers edge facilities in the US, but not in Southeast
Asia. Attempts of administrative personnel to find local IEPs are
slow and inefficient. Since resulting QoS is low, the application
provider stands at a major risk of losing this new audience.

In the above scenario, ExEC would detect the emergent flows of
end-user requests, initiate on-path discovery of IEPs, and migrate
edge services closer to the end-users, keeping them satisfied and
saving the core network’s capacity. In dynamic settings where
end-users’ behavior changes frequently and their locality is hard to
predict, ExEC has an advantage over interception [24] since it might
not be possible to foresee all regions where the application will
be used. Moreover, as end-to-end encryption becomes prevalent
on the Internet, solutions clinging to the on-path interception of
requests are not feasible, mandating the end-to-end approach.

We believe that the open approach enabled by ExEC is key to
ensuring the take-up of edge computing and making it ubiquitous
and pervasive. Unifying the discovery and access of current edge
facilities, which might be set up by either cloud providers (e.g.,
Azure Stack or Amazon CloudFront) or telecom operators (MEC),
ExEC goes further and opens an opportunity for crowdsourced so-
lutions, combating the “Internet feudalism”, brought up in [25]. The
advantage of ExEC is the capability to be incrementally adopted,
and while some IEPs might use it only for the discovery of their
facility, the others may utilize automatic migration of services and
contractual agreement. To the best of our knowledge, ExEC is the
first solution to enable the discovery of edge resources without spe-
cial controllers or specific entry points since ExEC advocates using
DNS as a global registry of IEPs. All functions of ExEC are designed
to utilize only existing protocols and do not require any changes to
available infrastructure or clients/servers. ExEC can coexist with

https://doi.org/10.1145/3301418.3313941
suzan bayhan

suzan bayhan
to be presented at EdgeSys 2019

suzan bayhan

Edge Service

MEC

ExEC Orchestrator

Discover

Onload

Edge Platform
Provider

Users utilize
the edge

Figure 1. The operation of ExEC. The system discovers IEPs on the
paths to clients and pushes edge services closer to their consumers.

other approaches, such as pre-deployed edge configuration, enhanc-
ing the system performance and reducing administrative overhead.

Using real-world topology data and experiments on cloud plat-
forms, we demonstrate that ExEC is feasible and it meets its goals
with sufficient performance. We believe that ExEC can boost EC
by i) providing unified discovery and access mechanism of edge
facilities ii) improving the availability of edge facilities by allowing
third parties to start offering their computational capacity for edge
iii) automatically unfolding the applications towards edge iv) ad-
vancing sustainable development of EC by utilization of already
existing computing facilities for the purposes of EC.

This paper is organized as follows. Section 2 describes the design
and enablers of ExEC. Preliminary evaluation results can be found
in Section 3. Section 4 discusses ExEC’s applicability to various
use cases. Related work is the topic of Section 5. Finally, Section 6
contributes on future directions and concludes the paper.

2 System Overview
We illustrate the operation of ExEC in Figure 1. There are three
main phases: discovery of IEPs, negotiation followed by contrac-
tual agreement, and migration of services across administrative
boundaries. As it was mentioned, the counter-parties may use ExEC
either to accomplish all these steps or just select relevant ones, e.g.,
if the list of the contracted IEPs is known in advance, only dynamic
service migrations might be used. Alternatively, if IEP discovered
by ExEC prefers custom contractual agreement, counter-parties
may handle this out of ExEC scope. The main entities of ExEC are
i) all kinds of IEPs, including cloudlets, MEC or crowdsourced edge
servers ii) an application which is composed of several services,
some of which need to be deployed at the edge for optimal perfor-
mance iii) the cloud which hosts the application initially1 iv) edge
orchestrator running in cloud which is responsible for executing
main functionalities of ExEC, such as discovery of IEPs, analysis of
request patterns, and dynamic onloading of services to edge.

2.1 Enabling Technologies
At the core of ExEC is a capability to discover IEPs located on the
paths from the end-users to cloud. We suggest that IEPs should

1Some of the application’s services might also be initially predeployed to edge.

register themselves in the DNS system by adding appropriate SRV
records. Such DNS records may cover a particular edge server or
a large IEP site. Opportunity to be discovered can bring new cus-
tomers and can increase revenue, therefore, acting as an economic
driver. An ability to gain revenue requires some form of contrac-
tual agreement, and this is the next layer of ExEC. In common, to
seal an agreement between two (or even more) parties we need a
third trusted party. Recently, a technology aiming for such a role
became widespread: namely, smart contracts popularized by the
Ethereum [4] platform. Basically, a smart contract is a program
wherein correctness of execution is verified by a majority of par-
ticipants thereby achieving distributed consensus. Due to smart
contracts, a centralized trusted party can be replaced by peer-to-
peer network; and as long as the majority of peers are fair in the
system, the correctness of smart contract execution can be guar-
anteed. Smart contracts appear as a viable solution for achieving
agreement on the scale of the Internet. The feature making them
especially attractive is an escrow service they provide out-of-box.
As Wright et al. [38] describe, a smart contract can hold the pay-
ment of a buyer and transfer it to the seller only after verifying
that service was delivered as promised. We conveniently employ
smart contracts in the context of ExEC as a decentralized solution
to handle payments and concordance. We discuss the details of
smart contracts utilization in the context of ExEC in Section 2.3.

For virtualization and service migration, we rely on existing tech-
nologies, such as Docker [3] or Virtual Machines (VMs). Docker con-
tainers are capable of live migration [39] and impose low overhead
also in other scenarios [26]. Similar solutions exist for VMs [14].
Internally, IEP can rely on, e.g., Kubernetes [5], OpenStack [6] or
Docker swarm.

The last layer in ExEC’s enabling technology stack is Trusted
Execution Environments (TEEs) [31]. With TEEs, even user hav-
ing root privileges cannot access a protected memory region of
an application. TEEs are supported by all major processor manu-
facturers, most of the attention gained Intel SGX (Software Guard
Extensions) [23], while ARM has developed its own TrustZone [8]
technology, which was also recently incorporated by AMD [7]. Ar-
nautov et al. [9] show how to protect Docker container with SGX.
TEEs are essential for ExEC operation only in those cases where
edge service handles private or sensitive data; otherwise, ExEC does
not require TEE.

2.2 Discovery of IEPs
ExEC builds its own view of a network which is centered at the
location of the edge orchestrator and comprised of paths to clients
together with IEPs discovered along those paths. We refer to this
view as topology and break down the process of building such a
topology into three steps. Figure 2 provides an intuitive overview,
and we give a detailed description of each step below.
Step 1: Determine paths to clients: Edge orchestrator monitors
incoming requests, and for every new request from a subnet that
orchestrator has not previously seen, the orchestrator initiates
network tomography procedure. In its purest form, this may be
just sending out a traceroute request to client’s address, which is
enough to identify the path from the cloud to the client and gather
information about latencies between on-path routers. ExEC is not
limited to usage of traceroute tool, which can be either completely
replaced or augmented by crowdsourced methodologies, active
network sniffing such as nmap, precomputed network topology

2

D
om

ai
n

B
Edge

D
om

ai
n

A

2. Identify
domains

ExEC Orchestrator

User
Group 1

User
Group 2

3. Edge
SRV query

Service X Service Y

Edge

1. Trace
route

Figure 2. Discovery of IEPs in ExEC works by tracing paths to
clients (1), identifying on-path domains (2), and querying DNS
servers of discovered domains for edge SRV records (3).

maps, and other methods. For now, we assume traceroute to be
sufficient for the functionality of ExEC.
Step 2: Determine on-path DNS zones: The network tomogra-
phy performed in the previous step gives ExEC the IP addresses
of routers on the paths to end-users. By using either DNS PTR
records or augmenting whois information for routers with no PTR
records, network domains that exist between the orchestrator and
the end-users can be identified.
Step 3: Locate the IEPs: This step is central to the working of
ExEC discovery phase. ExEC assumes that majority of IEPs registers
their resources as a DNS service (SRV) record with a consistent
service name (such as edge). We believe that this assumption is
realistic as making their edge infrastructure discoverable, the IEPs
can attract more clients and user traffic which can lead to increased
revenue. Furthermore, IEPs have a strong incentive to ensure that
the registered PTR records in DNS are accurate. An SRV record
points to a server in the zone and has the following format:

_service._protocol.name. TTL DNSclass SRV priority weight

port targetname

Listing 1 shows an example of DNS SRV record for DNS zone
domainA which hosts two IEPs, one MEC server – mecServerA and
the other IEP – edgePlatformB.

_edge._tcp.domainA.com. 86400 IN SRV 10 30 5060

mecServerA.domainA.com.

_edge._tcp.domainA.com. 86400 IN SRV 10 10 5060

edgePlatformB.domainA.com.

mecServerA.domainA.com. 86400 IN A 192.168.121.30

edgePlatformB.domainA.com. 86400 IN A 192.168.121.31

Listing 1. DNS SRV Records for IEPs

The SRV records in Listing 1 advertise the entry points of IEPs sup-
porting ExEC. The entry point is implemented as a RESTful service,
by means of which ExEC IEP communicates with the orchestrator,
receives containers to run, and performs other tasks.

2.3 Negotiation and Agreement
When present client flows and locations of IEPs are identified and
ExEC orchestrator has topology at hands, it is time to negotiate
about service deployments with IEPs, compute near-optimal place-
ment of services, enter a contractual agreement with selected IEPs
and finalize the deal by financial transaction.

To start negotiation procedure, the orchestrator connects to the
ExEC management service of IEPs and sends it hello message,
which may contain some preferences, e.g., a period for edge service
deployment. In response to this message, IEPs send to the orchestra-
tor the list of available time slots for service deployment, possible
hardware configurations that edge service can utilize during those
time slots, and information on a preferred way of contractual agree-
ment. The latter one may be as simple as contact information of IEP
management personnel, but we are interested in more advanced
scenario enabled by smart contracts. In the case IEP prefers smart
contract, it includes its address in the reply message to the or-
chestrator. The contract contains details of SLA, specifies a price
for the deployment of service, and has other relevant information.
Whether the orchestrator accepts the contract and finds offer by
IEP fair, it green-lists the IEP and includes it in service placement
computation, that we describe in the next section. For now, we
assume that the IEP was selected for service placement. In such
case, the orchestrator calls a method of smart contract that initiates
a preliminary agreement with IEP and sends it positive acknowl-
edgment message, containing information on, e.g., what slot was
chosen and what is the preferred hardware. Technically, calls to
such methods are posted similarly to transactions in any blockchain
system and must be cryptographically signed. The execution of a
method may result in the transfer of funds (cryptocurrency) from
one address to another, and in our case, the result of calling the
preliminary agreement method is that smart contract takes into
escrow the tokens that orchestrator is supposed to pay IEP. Upon
receiving positive acknowledgment IEP checks if the chosen slot
is still available, and calls confirmation or rejection method of the
smart contract respectively. In case everything was correct smart
contract finalizes the agreement.

There is a subtle point before the funds are released from es-
crow and either finally transferred to the IEP or returned to the
orchestrator. Namely, a malicious IEP might enter the agreement
but not run the service as promised, not fulfilling the requirements
of the SLA. Every open system suffers from problems alike, and
ExEC is no exception. The typical way to treat the challenge is to
have a reputation ranking for participants, as suggested in [38],
that would affect the payment in the case of disagreement between
IEP and the orchestrator.

2.4 Service Placement
Having topology with green-listed IEPs at hands, ExEC orchestra-
tor can compute near-optimal placement of edge services. As we
already mentioned, the problem of edge placement is well-studied
and is mostly approached as linear programming (LP) optimization
problem or an approximation of it in the case of NP-completeness.
However, in our setting we choose a more practical approach, tak-
ing advantage of the fact that our topology is a tree-like structure
centered at the location of the orchestrator. Namely, we suggest
using betweenness centrality [17] as a metric for edge service place-
ment. An intuition provides Figure 3, where nodes with highest

3

Figure 3. Network tree from cloud to clients. Nodes with highest
betweenness centrality are marked red.

betweenness centrality are marked red (except the central node,
where the orchestrator is located). Ideally, ExEC should deploy ser-
vices on nodes with high betweenness centrality (i.e., the selected
server serves many clients) but also which are as close to the clients
as possible (i.e., minimizing latency). For example, both nodes "C”
and "D” have the same betweenness centrality, but node "D” should
be preferred, as it is closer to the end-users. The network graph pre-
sented in Figure 3 was constructed by sending traceroute probes
from AWS EC2 instance running in Frankfurt (Germany) to the
public IP addresses of top-100 universities from the Times Higher
Education ranking [35]. We grouped the nodes into /24 subnets to
simplify the graph and assumed each node to be a potential edge
server location. The central node in the figure is the AWS instance,
and the other points are the discovered routers or client nodes. The
experiment simulates the situation where a service running on the
cloud has global interest.

2.5 Redirect and Discovery of Services
In this step, the orchestrator onloads the virtualized entity con-
taining edge service to set of available IEPs chosen for service
placement. Existing clients are redirected to the closest service lo-
cations with a 302 Moved temporarily HTTP response. HTTP
302 response allows to specify an expiration time, and this is used
to ensure that the redirection is valid as long as the deployment of
the service on the IEP can be guaranteed.

For new clients, it is reasonable to provide a discovery mecha-
nism that would eliminate a round trip to the cloud. One solution
would be mimicking approach used by CDNs for the discovery of
content. CDNs use DNS for content discovery [37], and in fact, ma-
jor cloud providers offer their own name resolution services [1, 2].
In those cases, where orchestrator and end-users are both utilizing
DNS services of the cloud, it is enough that the orchestrator updates
this commonly used DNS after the service migration.

2.6 Onloading Algorithm
The operation of the edge orchestrator can be implemented with
three daemons as in Algorithm 1. The first one (lines 2-6) updates
the topology, second (lines 7-13) discovers IEPs on the paths, com-
putes the service placement and redeploys the services if needed,
the third (lines 14-19) redirects the clients to the closest edge ser-
vice deployment if available. The algorithm is presented at a high
level, omitting details that parallel execution generally implies. The
first daemon groups the end-users by subnets and assembles the
aggregate tree by performing network tomography (e.g., utilizing

Algorithm 1 Onloading Algorithm Overview
1: placement← NULL, topology← NULL, platforms← NULL

▷ Topology discovery daemon
2: while TRUE do
3: wait topology_update_interval
4: topology← update topology using traceroute
5: if topology change exceeds threshold then
6: send topology_change_signal

▷ Discovery of IEPs and service placement daemon
7: while TRUE do
8: wait platforms_update_interval or topology_change_signal
9: if topology , NULL then
10: platforms← discover IEPs using DNS SRV records
11: placement← compute placement of services
12: negotiate with IEPs and update placement
13: schedule the deployment of services

▷ End-user request dispatch daemon
14: while TRUE do
15: request← client’s request from queue
16: if placement , NULL then
17: if placement contains edge closer than cloud then
18: Reply with redirect to closest edge in placement
19: else
20: Cloud handles the request
21: else
22: Cloud handles the request

traceroute). If there is a dramatic change in the topology caused,
e.g., by a flash crowd, the first daemon signals the second daemon.
The second daemon augments the topology by discovering IEPs
(line 10). Next, daemon negotiates with discovered IEPs on the
conditions of service deployments and updates the placement. The
third daemon dispatches the incoming clients, redirecting them to
the appropriate IEP if any available. The parallel execution of three
daemons enables us to perform tasks at different time granulari-
ties, depending on how quickly the conditions in the network are
expected to change.

3 Preliminary Evaluation
For the evaluation, we used the public router dataset fromCAIDA [21],
restricted to routers located on the East Coast of the US. We ran our
orchestrator from a cloud instance of Amazon Web Services (AWS),
also on the East Coast. We considered routers from the CAIDA data
set to be the leaves of our tree and issued traceroute requests to
them from the cloud. Since the obtained aggregate tree was quite
detailed, we grouped the nodes together by using a subnet mask of
16 bits, which resulted in a tree of 240 nodes, of which 186 were
leave nodes. We considered each such node as a potential deploy-
ment point for an IEP, i.e., there were 240 possible edge server
deployment points.

We first compared different placement schemes for edge ser-
vices, assuming that every node has an IEP. During each round
of simulation, we uniformly scattered one million clients. Using
traceroute, we measured the average latency of the clients in four
different cases of service placement: only cloud (no services placed
at the edge); randomly chosen IEPs; greedily chosen IEPs (deploy
service to IEP nodes with the maximum amount of clients); IEPs
selected according to their betweenness centrality measure [17].
Figure 4a shows that in the absence of an edge the average latency
stays around 100 ms. Centrality performs well when service can be

4

% of nodes with edge used

La
te

nc
y,

 m
s

40
60

80

0 10 20 30

Cloud
Random
Greedy
Centrality

(a) Placement methods.

of subnets

T
im

e
ta

ke
n,

 s
ec

0
50

0
10

00
15

00

50 100 150

1 thread
2 threads
3 threads

(b) Time required by traceroute.

Figure 4. Performance of ExEC.

Edge nodes available, %

E
dg

e
no

de
s

us
ed

, %

La
te

nc
y,

 m
s

20

40

60

80

5 10 15 20 25 30

20

40

60

80

100

Figure 5. Performance of centrality placement given limited
amount of IEPs.
deployed only to a limited number of edge nodes. Greedy method
outperforms centrality when the service is deployed to over 20%
edge nodes in the network. Given more than 30% of edge nodes,
random placement also starts to work well. Since the application
provider has to pay the IEPs, it is likely that in many cases the
number of deployed services remains limited; thus betweenness
centrality is an attractive choice of placement.

Next, we denounce naïve assumption that every node has an IEP
and scatter limited amount of IEPs uniformly across the network.
Fig. 5 shows latency for centrality placement when the underlying
network has from 0 to 30% of nodes equipped with edge platforms,
and application utilizes from 0 to 100% of them. We observe, e.g.,
that when the network has more than 20% of equipped with an
edge, and around half of them with highest centrality are used by
the application, the latency stays at or below 30ms.

Using a prototype client implementation, we evaluated the effect
of redirection on the end-users latency. We used a laptop computer
as the client, the closest Microsoft Azure facility as the cloud, and
server located in the same city as the edge server. The client first
sent the request to the cloud which issued an HTTP redirect to the
edge server, so subsequent requests were served by the edge. We
also measured latencies for using only the cloud or directly the edge
server. We used two types of responses by size: a small one of 25
kB, and a large one of 1 MB. As a result for small response in Fig. 6
shows, the redirect shows good results for intense communication;
when the number of requests approaches 15, the average latency
becomes very close to that of the edge. In case of large response,
redirect has performance gain even for a single request, and average
latency of redirect converges to edge latency much faster.

Running multiple traceroutes takes a relatively long time, and
during our experiments, we also measured the time required by
traceroute to gather the information for building the aggregate
tree. We display the results in Figure 4b. In the case of sequential
execution, it took more than 1500 seconds to build the aggregate
tree used in our experiments. Fortunately, traceroute tasks can
be easily parallelized, and using three threads in parallel reduced
time requirements to a third, approximately 500 seconds. Increasing
the number of parallel traceroutes will decrease the time even

of requests

La
te

nc
y,

 s
ec

0.02

0.05
0.1
0.2

0.5
1

5 10 15 20 25 30

Cloud
Edge

Redirected

(a) Response size: 25 kB.

of requests

La
te

nc
y,

 s
ec

1.3

1.4

1.5
1.6
1.7
1.8

0 5 10 15 20 25 30

Cloud
Edge

Redirected

(b) Response size: 1 MB.
Figure 6. Effect of redirect on end users’ latency.

further. Also, since clients may reside in the same subnets, we do
not have to run traceroutes for every single client, but can reuse
the results of an earlier run. This explains the sub-linear increase
in the time taken shown in Figure 4b.

4 Discussion
ExEC is not limited to computational onloading that we have just
examined as the example scenario. Other use cases we discuss below
are more straightforward to implement. Another commonly-used
edge computing scenario is offloading computationally heavy tasks
from a client to an edge server. Given the assumption of ExEC
that IEPs are in the DNS, the client can query its current domain
for the DNS SRV edge records, getting a list of nearby IEPs as a
result. While the scope of such discovery is limited to the current
domain, it is not a severe limitation since edge servers with minimal
networking distance to the client reside nowhere but in its current
domain.

The practical issue that remains open is the discovery of context-
specific edge applications. Examples of such applications include,
e.g., providing an all-around view at the stadium by aggregating
individual users’ video streams [27], improving the customer ex-
perience at a shopping mall [12], and many others. These kinds
of applications generally make their way to the user by means of
advertisement, such as billboards, emails and so on. With ExEC, it
is possible to discover nearby IEPs, and they, in turn, can provide
on client’s request list of available context-specific applications and
services. From a client perspective, this would require running an
inquiry service, which user can turn off or on at will.

5 Related Work
The most relevant work to ours are [10, 29, 32, 36]. Bhardwaj et
al. [10] propose an edge discovery protocol as a backend service
that hosts a directory of available devices. However, this approach
requires a centralized catalog to register the devices. Using DNS
for the discovery of edge providers eliminates the problem of cen-
tralized catalog management and ownership. Varghese et al. [36]
present a concept of an EaaS (Edge-as-a-Service) platform, offering
a discovery protocol. The downside is that the platform relies on
specific master controller nodes: to utilize edge, one must know the
particular provider of EaaS to be able to discover the edge resources.
Kinaara [32] offers discovery capabilities as an EC framework. The
discovery process is enabled by special mediator nodes that keep a
connection to the cloud. Yet, it is not discussed how mediators are
discovered nor whether it can be used for general purpose cloud
applications. Contrary to open discovery, one must knowwhere the
instance of Kinaara is installed to utilize its features. Mortazavi et
al. suggest the concept of path computing [29], which is very similar

5

to our view of edge environment, where edge resources reside on a
path from the cloud to an end user. Their framework, CloudPath,
addresses many practical issues, but edge discovery does not hap-
pen on the fly. The developer is actually responsible for specifying
the mappings between application functions and actual computing
facilities in the deployment descriptor file. Thus, in contrast to our
approach, CloudPath assumes static edge infrastructure which is
known beforehand, already at the stage of application development.
We believe that frameworks presented in [29, 32, 36] can poten-
tially gain from utilizing ExEC, which removes the necessity for
highly specialized components, adds more agility, and improves the
overall user experience since ExEC discovers previously unknown
resources.

MEC [30] is a standardization effort for EC in the area of mobile
applications. In MEC, the edge servers are connected directly to
cellular base stations making discovery of the servers easy for
end-users. However, the dynamic onloading of services from the
cloud is not possible since the cloud is agnostic of MEC servers.
Thus, MEC could potentially benefit from ExEC’s discovery and
negotiation protocols. In [24], the authors propose a transparent
MEC deployment through middleboxes. Still, their solution relies
on traffic interception, thus having narrow applicability.

Application of blockchain and smart contracts to the domain
of EC is explored in [38] and [34], examining not only the realm
of financial transactions but also building a decentralized control
system for EC on top of the distributed ledger.

In [15] and [20], the authors emphasize the importance of build-
ing an open infrastructure for EC, concentrating on the OpenStack
platform as a resource manager. In ExEC, IEPs can use OpenStack
internally for the management of edge servers. In our recent work
[40], open EC infrastructure is envisioned as a fully decentralized
environment. However, we believe that retaining some degree of
centralization by using the orchestrator component renders a more
practical solution.

6 Conclusion
Discovery of edge platforms and dynamic reallocation of services
is a vital part of making edge computing a reality. In this paper,
we have presented ExEC, an open platform aiming to define com-
mon practices for the discovery of edge providers on the fly. With
ExEC, we also made a first step towards establishing a standard
protocol for interaction between cloud and edge providers. Our
approach opens an opportunity for third-party edge providers and
makes it possible for applications to unfold dynamically towards
the edge without any administrative overhead. ExEC contributes to
sustainable development by improving the utilization of existing
computing facilities, enabling their usage as edge platforms.

In the future, we plan to implement the edge orchestrator pro-
viding the reference implementation of our discovery and negotia-
tion protocols. We intend to equip the orchestrator with an online
decision-making algorithm, capable of predicting user behavior
and employing state-of-the-art techniques from machine learning
and AI fields.

Acknowledgments
This work was supported by the Academy of Finland in the
BCDC (314167), AIDA (317086), and WMD (313477) projects.

References
[1] 2019. Amazon Route 53. https://aws.amazon.com/route53/.
[2] 2019. Azure DNS. https://azure.microsoft.com/en-gb/services/dns/.
[3] 2019. Docker. https://www.docker.com/.
[4] 2019. Ethereum Blockchain App Platform. https://ethereum.org/.
[5] 2019. Kubernetes. https://kubernetes.io/.
[6] 2019. OpenStack. https://www.openstack.org/.
[7] AMD. 2019. AMD Secure Processor. https://www.amd.com/en/technologies/

security
[8] ARM. 2018. ARM TrustZone. https://www.arm.com/products/silicon-ip-security
[9] Sergei Arnautov et al. 2016. SCONE: Secure Linux Containers with Intel SGX..

In OSDI, Vol. 16. 689–703.
[10] Ketan Bhardwaj et al. 2016. Fast, scalable and secure onloading of edge func-

tions using airbox. In Proceedings of the Second ACM/IEEE Symposium on Edge
Computing (SEC ’16).

[11] Flavio Bonomi et al. 2012. Fog computing and its role in the internet of things.
In Proceedings of the first edition of the MCC workshop on Mobile cloud computing.
ACM, 13–16.

[12] Steven Carlini. 2016. How the Internet of Things and Edge Computing Will
Help Revolutionize the Shopping Experience. https://blog.schneider-electric.
com/datacenter/2016/06/03/iot-edge-computing/.

[13] Alberto Ceselli et al. 2017. Mobile Edge Cloud Network Design Optimization.
IEEE/ACM Transactions on Networking 25 (2017), 1818–1831.

[14] Lucas Chaufournier et al. 2017. Fast Transparent Virtual Machine Migration in
Distributed Edge Clouds. In Proceedings of the Second ACM/IEEE Symposium on
Edge Computing (SEC ’17). ACM, New York, NY, USA.

[15] Ronan-Alexandre Cherrueau et al. 2018. Edge Computing Resource Management
System: a Critical Building Block! Initiating the debate via OpenStack. In HotEdge
18. USENIX Association, Boston, MA.

[16] ETSI. 2018. MEC Deployments in 4G and Evolution Towards 5G. Technical Report.
[17] Linton C. Freeman. 1977. A Set of Measures of Centrality Based on Betweenness.

Sociometry 40, 1 (1977), 35–41. http://www.jstor.org/stable/3033543
[18] Pedro Garcia Lopez et al. 2015. Edge-centric computing: Vision and challenges.

ACM SIGCOMM Computer Communication Review 45, 5 (2015), 37–42.
[19] Golem Worldwide Supercomputer. 2017. https://golem.network/
[20] David Haja et al. 2018. How to orchestrate a distributed OpenStack. In IEEE INFO-

COM 2018-IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). IEEE, 293–298.

[21] B. Huffaker et al. 2012. Internet Topology Data Comparison. Technical Report.
Cooperative Association for Internet Data Analysis (CAIDA).

[22] iExec. 2019. https://iex.ec/
[23] Intel. 2019. Software Guard Extensions. https://software.intel.com/en-us/sgx
[24] Chi-Yu Li et al. 2018. Mobile Edge Computing Platform Deployment in 4G LTE

Networks: A Middlebox Approach. In HotEdge 18. USENIX Association.
[25] Tai Liu et al. 2017. The Barriers to Overthrowing Internet Feudalism. In Proceed-

ings of the 16th ACM Workshop on Hot Topics in Networks. ACM, 72–79.
[26] Lele Ma et al. 2017. Efficient service handoff across edge servers via docker

container migration. In Proceedings of the Second ACM/IEEE Symposium on Edge
Computing (SEC ’17).

[27] Mobile Europe. 2017. Nokia brings AR to sports stadium with
MEC platform. https://www.mobileeurope.co.uk/press-wire/
nokia-bring-ar-to-sports-stadium-with-mec-platform.

[28] Nitinder Mohan et al. 2018. Anveshak: Placing Edge Servers In The Wild. In
Proceedings of the 2018 Workshop on Mobile Edge Communications. ACM, 7–12.

[29] Seyed Hossein Mortazavi et al. 2017. Cloudpath: A Multi-tier Cloud Computing
Framework. In SEC ’17. ACM, New York, NY, USA.

[30] Dario Sabella et al. 2016. Mobile-edge computing architecture: The role of MEC
in the Internet of Things. IEEE Consumer Electronics Magazine 5, 4 (2016), 84–91.

[31] Mohamed Sabt et al. 2015. Trusted execution environment: what it is, and what
it is not. In 14th IEEE TrustCom.

[32] Ahmed Salem et al. 2017. Kinaara: Distributed discovery and allocation of mobile
edge resources. In 2017 IEEE 14th International Conference on Mobile Ad Hoc and
Sensor Systems (MASS). IEEE, 153–161.

[33] Mahadev Satyanarayanan et al. 2009. The case for vm-based cloudlets in mobile
computing. IEEE pervasive Computing 8, 4 (2009).

[34] Alexandru Stanciu. 2017. Blockchain based distributed control system for edge
computing. In Control Systems and Computer Science (CSCS). IEEE, 667–671.

[35] Times Higher Education. 2019. World University Rankings. https://www.
timeshighereducation.com/world-university-rankings/2018/world-ranking.

[36] Blesson Varghese et al. 2017. Edge-as-a-Service: Towards Distributed Cloud
Architectures. arXiv preprint arXiv:1710.10090 (2017).

[37] Zheng Wang et al. 2017. Evolution and challenges of DNS-Based CDNs. Digital
Communications and Networks (2017).

[38] Kwame-Lante Wright et al. 2018. SmartEdge: A Smart Contract for Edge Com-
puting.

[39] Chenying Yu and Fei Huan. 2015. Live migration of docker containers through
logging and replay. In Advances in Computer Science Research, International
Conference on Mechatronics and Industrial Informatics.

[40] A. Zavodovski et al. 2018. ICON: Intelligent Container Overlays. In Proceedings
of the 17th ACM Workshop on Hot Topics in Networks. ACM, 15–21.

6

https://aws.amazon.com/route53/
https://azure.microsoft.com/en-gb/services/dns/
https://www.docker.com/
https://ethereum.org/
https://kubernetes.io/
https://www.openstack.org/
https://www.amd.com/en/technologies/security
https://www.amd.com/en/technologies/security
https://www.arm.com/products/silicon-ip-security
https://blog.schneider-electric.com/datacenter/2016/06/03/iot-edge-computing/
https://blog.schneider-electric.com/datacenter/2016/06/03/iot-edge-computing/
http://www.jstor.org/stable/3033543
https://golem.network/
https://iex.ec/
https://software.intel.com/en-us/sgx
https://www.mobileeurope.co.uk/press-wire/nokia-bring-ar-to-sports-stadium-with-mec-platform
https://www.mobileeurope.co.uk/press-wire/nokia-bring-ar-to-sports-stadium-with-mec-platform
https://www.timeshighereducation.com/world-university-rankings/2018/world-ranking
https://www.timeshighereducation.com/world-university-rankings/2018/world-ranking

	Abstract
	1 Introduction
	2 System Overview
	2.1 Enabling Technologies
	2.2 Discovery of IEPs
	2.3 Negotiation and Agreement
	2.4 Service Placement
	2.5 Redirect and Discovery of Services
	2.6 Onloading Algorithm

	3 Preliminary Evaluation
	4 Discussion
	5 Related Work
	6 Conclusion
	References

