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Understanding Scoped-Flooding for Content
Discovery and Caching in Content Networks

Liang Wang, Suzan Bayhan, Jörg Ott, Jussi Kangasharju, and Jon Crowcroft

Abstract—Scoped-flooding is used for content discovery in
a broad networking context and it has significant impact on
the design of caching algorithms in a communication network.
Despite its wide usage, a thorough analysis on how scoped-
flooding affects a network’s performance, e.g., caching and
content discovery efficiency, is missing. To develop a better
understanding, we first model the behaviour of scoped-flooding
by the help of a theoretical model on network growth and utility.
Next, we investigate the effects of scoped-flooding on various
topologies in information-centric networks (ICN). Using the
proposed ring model, we show that flooding can be constrained
within a small neighbourhood to achieve most of the gains which
come from areas with relatively low growth rate, i.e., the network
edge. We also study two flooding strategies and compare their
behaviours. Given that caching schemes favour more popular
items in competition for cache space, popular items are expected
to be stored in diverse parts of the network compared to the less
popular items. We propose to exploit the resulting divergence
in availability along with the routers’ topological properties to
fine tune the flooding radius. Our results shed light on designing
both efficient content discovery mechanism and effective caching
algorithms for future ICN.

Index Terms—Scoped-flooding, information-centric network,
content discovery, graph analysis, optimisation, network protocol,
network growth, caching.

I. INTRODUCTION

One of the biggest challenges mobile network operators
have recently been tackling with is the constantly increasing
demand for capacity: monthly mobile data traffic is now
around a few GBs and expected to reach tens of GBs depend-
ing on the region by 2023 [1]. Hence, operators are looking
for cost-effective solutions that can increase their network
capacity to provide high user satisfaction. While the spectra of
proposed solutions are broad from physical layer approaches
such as large-scale multi-antenna systems [2] to expansion in
the spectrum resources like LTE in the unlicensed bands [3],
one idea is to focus on how the Internet is used today and
exploit the network entities for storing the most-frequently-
requested content. More specifically, this line of proposals,
also known as Information-Centric Networks (ICN), are based
on the fact that users are interested in content more than
who is the source of the content, and hence by exploiting
the repetitions in the content requests as well as each network
element as a content storage unit, we can decrease the burden
on the mobile operator’s network.
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An ICN [4]–[7] promises bandwidth efficiency to the net-
work operator and shorter latency to the clients as it supports
ubiquitous caching and content delivery from the nearest cache
in the neighbourhood of a client. However, content, especially
popular content, in an ICN may reside “anywhere”, therefore
the distribution efficiency heavily relies on the effectiveness of
content discovery mechanisms. Considering the gap between
large content objects and scarce router resources, designing
intelligent content discovery to balance protocol simplicity,
computational complexity, and traffic overhead is crucial in
every ICN architecture.

Content discovery in ICN is generally achieved by
resolution-based [5]–[11] or routing-based [4], [12], [13]
solutions, or a hybrid of two approaches [14]. Resolution-
based discovery which utilizes a lookup-by-name approach is
a deterministic solution which maps requesters with content
providers at rendezvous points. The rendezvous point can
be either statically configured or referred by proper content
addressing [6], [10], [11]. Though resolution-based discovery
has relatively small traffic footprint, its performance may
degrade quickly in face of large and dynamic content demands.
Moreover, fast change in the content location may result
in a huge overhead to keep the knowledge on the content
location up-to-date [14], [15]. On the other hand, the routing-
based discovery usually provides a probabilistic solution. The
chances of finding the content can be improved by exploring
a larger area of the network, i.e., via collaboration or flooding.
In practise, naive network-wide flooding is rarely used due to
its significant traffic overhead. A flooding operation is usually
constrained within a well-defined neighbourhood (or scope)
which is often referred to as scoped-flooding. Technically, such
constraint on the neighbourhood size is achieved by setting a
hop limit for each flooding (e.g., TTL limit).

The use of flooding is based on the following considerations.
First, flooding can significantly reduce the protocol complexity
and simplify the design, which is very desirable in an unstable
environment [16]. Second, in addition to the well-known
temporal locality, user requests also possess strong spatial
locality [17]. The two localities together indicate that it is
highly likely to discover a popular content among nearby
nodes. Third, flooding can reduce the state maintained in
the network for a routing-based discovery [18]. Fourth, the
communication between close neighbours is relatively cheap
(regarding delay, transmission cost and etc.) compared to
using backhauls in many cases. Therefore, flooding remains
as the default fallback strategy for content discovery if normal
forwarding fails in CCNx [19], and also used in various routing
and caching designs [13], [18], [20]–[23].
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Despite its wide application (e.g., in ICN [4], [23],
MANET [24], [25]), a thorough understanding of how scoped-
flooding affects content discovery is still lacking. More pre-
cisely, the following key questions are awaiting answers: (1)
what is the optimal radius of scoped-flooding? (2) where do
most of the gains come from in a network? (3) how do
topological properties of a network impact scoped-flooding?
The answers will shed light on designing more intelligent
strategies by flooding for the proper content at the right place
with the optimal radius.

In this paper, to address the aforementioned problems, we
propose a node-centric, ring-based model to analyse scoped-
flooding. Based on the ring model, we first investigate neigh-
bourhood growth model on general network topologies. The
results show that average growth rate increases at least ex-
ponentially and can be well estimated using the information
within 2-hop neighbourhood. Along with Bayesian techniques,
we solve the optimal radius problem and further compare two
flooding strategies (static and dynamic) on specific network
models.

Specifically, our contributions are threefold:

1) Different than the literature using flooding as a content
delivery protocol without a clear understanding of its
operation, we provide a theoretical analysis of scoped
flooding using a node-centric ring-based model. Our
model is independent of the specific ICN architecture
which makes our findings relevant for a broad network-
ing context. Later, via simulations, we provide an ICN-
specific analysis, e.g., byte hit rate.

2) Modelling the utility of scoped flooding as a function
of content availability, node neighbourhood, and cost
of flooding, we formulate an optimization problem to
derive the optimal scope for each node and content. The
analytical results along with the evaluations on realistic
network topologies show optimal flooding radius is very
small, e.g., mostly no more than 3 hops.

3) Most of the gains of scoped-flooding are from very small
neighbourhoods located at network edges, indicating
flooding is more proper at the network edge instead of
the network core.

The rest of the paper is organized as follows. Section II
overviews the related literature and discusses how the current
paper differs from the existing studies. Section III introduces
the considered setting where scoped flooding is applied for
content discovery, while Section IV presents our approach to
model the cost incurred by scoped flooding, namely network
growth model. Next, Section V formalizes the optimal flooding
scope considering content availability both as a priori infor-
mation and a posteriori. Using this formalization, we derive
the optimal radius from a closed-form equation. Section VI
explains two strategies for flooding, namely static and dynamic
flooding which differ in how they set the flooding radius.
Finally, Section VII evaluates the performance of the proposed
strategies both using synthetic network models and real net-
work topologies, while Section VIII concludes the paper.

II. RELATED WORK

We can categorize the literature into two as resolution-based
discovery and routing-based discovery.

Resolution-based discovery [5]–[11] provide deterministic
solutions, i.e., at least one copy will be found as long as the
content is stored within the network. Therefore, such solutions
either require complete knowledge on content distribution and
network topology [5], [7], [8] or utilize hash-based content
addressing [6], [9]–[11]. Essentially, demands and supplies
meet at rendezvous points (the actual name differs depending
on specific architecture). The rendezvous point either returns
a locator or copy of the requested content [5], [6], or redirects
the request to one content provider [8], [10], or constructs a
distribution topology [7] depending on an actual design. A
resolution-based scheme is sometimes referred to as Name
Resolution Service (NRS) similar to DNS in Internet.

Resolution-based solutions can reach high success rate but
have to maintain the states of content distribution in a network
hence are confronted with scalability issue when dealing
with large and highly dynamic content demands. Therefore,
resolution-based discovery schemes consider the scalability
of NRS as one of the key goals to achieve in content
discovery. A content’s location needs to be updated in the
NRS to fetch the content from the nearest location so that the
overall network traffic is decreased. However, the maintenance
requires networked caches to update the NRS about their
contents, e.g., addition of a new content in the cache or
eviction from the cache. Hence, for an NRS to meet its goal,
the entailed control message overhead must not overwhelm the
network. To understand under which cases the NRS benefits
outweigh the overhead, Azimdoost et al. [15] analyze the
overhead due to maintaining the location of content in an
ICN as well as the bandwidth savings facilitated by nearest
replica routing. Analysis in [15] using rate-distortion theory
shows that for large data items resolution based discovery
provides bandwidth efficiency as the cost of updating the NRS
is markedly lower than the cost of data download. In a similar
spirit, Bayhan et. al. [14] design a partial NRS which maintains
location information for some items while for the rest, content
discovery relies on scoped flooding. To decide on which items
the NRS should track, authors consider the cost of content
delivery both in terms of network traffic and monetary costs
as retrieving content from an external network, e.g., another
AS, is more costly than retrieving from within the AS.

Routing-based discovery [4], [12], [13], [26] usually only
provides opportunistic solutions, i.e., content will be found
with certain probability. The chances of discovery can be
improved by either collaborating with nearby nodes [13], [27]
or exploring a network via flooding [12], [20], [21], [26],
[28]. Both introduce extra traffic overhead. [27] propose using
Bloomfilters to exchange information on content availability
to improve caching performance. [20], [21], [29] empirically
showed that opportunistic flooding can improve content dis-
covery and delivery, also reduce the states maintained in a
network. [12], [23], [28], [30] showed that flooding is espe-
cially preferred in an unreliable environment to compensate
for potential message loss. Empirically or analytically, all [12],
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[21], [26], [30] attested that naive flooding is hardly viable in
practise, the scope needs to be regulated carefully to reduce the
cost. Our work complements these works by providing first a
theoretical analysis on the optimal scope and then designing a
dynamic-scope setting scheme for flooding based on the node’s
and requested content’s properties.

Scoped-flooding is also applied in opportunistic networks
for content search as resolution-based solutions are difficult
to realize in such ad hoc networks due to the lack of a
reliable infrastructure. As in mobile opportunistic networks,
nodes are mostly energy-limited small devices, ensuring ef-
ficiency of scoped-flooding without being energy-wasteful is
crucial. Motivated by this concern, [31] models the spread of
content discovery messages in an opportunistic network under
a given hop-limit (similar to the scope in scoped-flooding).
Authors [31] show that search scope can be limited to a
few hops as after several hops the extra gain diminishes as
a function of content availability and tolerated delay. While
our conclusions in the current paper agrees with the results of
[31], our paper presents a theoretical ground for the observed
small scope, as opposed to simulation-based analysis of [31].

Regarding the neighbourhood growth model, besides [32]–
[34], another important line of research is expander graph [35].
In general, the advances in graph theory has improved our
understanding on network graphs and laid the foundation of
this work. Nonetheless, none carefully analysed the scoped-
flooding for content discovery from network topology per-
spective, not to mention examining the distribution of gains
and improvements within a network. Our analysis attributes
the cause of small radius to the exponential growth rate of
neighbourhoods, and the evaluation explains why most of the
gains are from the network edge by studying the distributions
of utility and improvement. To our knowledge, ours is the
first study analytically and empirically examining the effects
of scoped-flooding on well-defined network models.

III. SYSTEM MODEL

We assume an information-centric network whose topology
is represented with a graph G = (V, ⇢), where V is a set of
nodes characterized with degree distribution ⇢. ⇢k denotes the
probability that a node has exactly degree k. The distribution
can be arbitrary. For a node vi, we organize its neighbourhood
into r concentric rings according to the lengths of shortest
paths between vi and its neighbours. We denote nr as average
number of r-hop neighbours on the rth ring. We refer to this
model as node-centric ring-based model, or simply a ring
model. In reality, nodes may break down resulting in lost
messages. We denote the stability with � 2 (0, 1] to represent
the probability that a router is up and working properly, i.e., the
reliability rate. Equivalently, (1��) denotes the failure rate.

Designing a fully-fledged protocol is out of the scope of this
paper. Instead, we briefly describe general flooding behaviours
in the following. Nodes in a network receive requests from
either directly connected clients or neighbours. We exclude
clients from the model and focus only on core network.
Whenever a request arrives, a node first looks for a match in
its local cache. If the node cannot find the requested content
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Utility value is decomposed into multiple layers 
accordingly. Flooding stops before the ring 
where utility drops below zero.
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Fig. 1: In a ring model, to estimate whether the utility on the
(r+1)th ring drops below zero, a node on the rth ring needs
to know three pieces of information (1) which ring it is; (2)
how its neighbourhood grows; (3) content availability.

locally, it decides whether to initiate a scoped-flooding before
simply forwarding the request to the next hop along the path to
original content providers. The flooding is constrained within
an r-hop neighbourhood by maintaining a hop counter in
packet header. The counter is decreased by one every time
when passing a node. The node forwards the message on all
its network interfaces except the one where the message arrives
and terminates flooding if the counter reaches zero. After the
content is discovered, we assume it is routed to the initial
flooding node in a reverse route similar to CCNx. To prevent
loops, nodes do not flood the messages they have seen before.

For simplicity, we do not consider the case of partially
matched content. A node i either has the exact requested
content or not. The value of response R is described as an
i.i.d random variable which follows a Bernoulli distribution
R ⇠ Bernoulli(p), with 1 representing a successful discovery
and 0 otherwise. p is often referred to as content availability.
Note that p itself can follow different distributions to model
content availability (e.g., Zipf or Weibull). By definition, we
let q , 1 � p denote the probability of failing to find the
matched content on a node. Fig. 1 shows our ring model.

There are many resource constraints in a network such
as energy, bandwidth, and storage. In our model, we use c
to represent the cost induced by receiving and processing
flooding requests. Besides, consecutive requests may affect
content delivery in terms of added queueing and processing
delay which we assume to be roughly proportional to the
number of messages. However, the cost can increase faster and
requests may be dropped in a busy network. To generalise,
we model the cost as a linear function of number of nodes
involved in flooding.

Intuitively, an efficient scoped-flooding scheme discovers
the content in the neighbourhood of the searching node with
high probability without resulting in high overhead. To find
the optimal scope, we need to model the following three
components: cost of scoped flooding, gain of scoped flooding,
and utility representing the net benefit under the given cost
and gain model. We provide our cost model in Section IV and
describe the gain and utility models in Section V.

IV. NEIGHBOURHOOD GROWTH MODEL

The first step for discovering the optimal radius is to
understand how neighbourhood grows as a function of flooding
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radius. Newman derived this functional relation in [33] using
a general graph model G = (V, ⇢). We recap briefly the
major steps of the derivation in Section IV-A, based on which
we investigate two specific types of networks, i.e., random
networks and scale-free networks. Then, we examine the
accuracy of estimates on both synthetic and realistic networks.

A. Average Number of r-Hop Neighbours
The effective topology due to a flooding can be viewed

as a distribution tree. On non-trivial topologies, such a tree
cannot be easily decomposed into multiple linear models
(from root to leaves). We apply ring model to organize the
neighbourhood of node v into r concentric rings according to
the neighbour’s distance to v so that we can study the growth
ring by ring. Calculating n1, namely the average number of
directly connected neighbours, is trivial. Let hki denote the
mean of a given degree variable k. Average number of 1-hop
neighbours equals the node’s average degree as follows:

n1 = hki =
1X

k=0

k⇢k. (1)

However, calculating nr (r � 2) is not as straightforward
as n1 since the degree distribution of a node’s neighbour is
not the same as the general degree distribution of the whole
network [32]. Let vj be one of vi’s next-hop neighbours and
⌧k be the probability of vj having k emerging edges which
lead to k new next-hop neighbours. Note that we exclude the
edge leading back to vi from vj since it does not contribute to
new nodes. The results in [34] show ⌧k is proportional to both
vi’s degree and general degree distribution of the network.
The reason is that the edges of a high-degree node have a
higher chance to connect to any given edge in the network.
The probability of vj having k new next-hop neighbours is:

⌧k = Pr[deg(vj) = k|⇢] = (k + 1)⇢k+1P
m m⇢m

. (2)

Therefore, the average number of new nodes from vj is:
1X

k=0

k⌧k =

P1
k=0 k(k + 1)⇢k+1P

m m⇢m

=

P1
k=0 k(k � 1)⇢kP

m m⇢m
=

hk2i � hki
hki . (3)

Because we did not assume vi is on any specific concentric
ring except r � 2, we can use the same ⌧k and the same
logic above to calculate arbitrary r-hop neighbours. Namely,
nr equals the average number of nodes on the (r � 1)th ring
multiplied by their average out-degree to the rth ring.

nr = nr�1

1X

k=0

k⌧k =
hk2i � hki

hki nr�1

=


hk2i � hki

hki

�r�1

· hki (4)

Eq.(4) shows that the number of r-hop neighbours is a function
of the degree variable. Using Eq. (4), we can calculate n2 =
hk2i�hki. As we know n1 = hki, by applying the replacement

recursively, we can rewrite Eq. (4) as below, which eventually
leads us to the same function found in [33].

nr =


n2

n1

�r�1

· n1. (5)

Eq.(5) shows that nr can also be expressed as a function
of the ratio between average number of 2-hop and 1-hop
neighbours. The neighbourhood size only converges if there
are fewer 2-hop neighbours than 1-hop ones, i.e., n2

n1
< 1,

which implies that the network has multiple components with
high probability. We define neighbourhood growth rate � as:

� , n2

n1
, hk2i � hki

hki . (6)

Note that the derivation above applies to any general net-
work of arbitrary degree distributions. The result gives an
interesting implication on the topological inference, which
says that a node can approximate � by utilizing the local
knowledge within its 2-hop neighbourhood. In the following,
we focus on the growth rate � and study two specific network
models: random network and scale-free network. Both are
prominent in networking research due to their representa-
tiveness of many realistic networks [36], [37]. Specifically,
empirical evidence shows mobile and opportunistic networks
can be either random [38] or scale-free [39], whereas fixed
and wired networks are mostly scale-free [36].

B. Case 1: Random Networks
Random networks have a binomial degree distribution

B(|V |, ⇢) which is given by the following formula [40]:

⇢k =

✓
|V |� 1

k

◆
⇢k(1� ⇢)|V |�k�1.

For very big |V | and small ⇢, the binomial distribution above
converges to the Poisson distribution in its limit. Then, the
degree distribution ⇢k becomes:

lim
|V |!1

⇢k =
hkike�hki

k!
.

For calculating � in Eq.(6), we need to derive the second
moment of random variable k, i.e., hk2i. Using Touchard
polynomials 1, the rth moment of a variable with Poisson
distribution can be calculated as eq. (7) shows.

�r
k

 
denotes

Stirling numbers of the second kind [40] which represents the
number of ways to partition a set of r objects into k non-empty
subsets, and is known for calculating hkri.

hkri = e�hki
1X

k=0

hkik · kr

k!
=

rX

k=1

⇢
r

k

�
hkik (7)

Combining Eq. (7) and Eq. (4) yields:

n2 =

⇢
2

2

�
hki2 +

⇢
2

1

�
hki � hki = hki2. (8)

1We can also use moment generating functions for a Poisson random
variable with parameter �, i.e., MX(t) = e�(e

t�1), and we derive hk2i
by calculating M 00

X(t = 0). This gives us: hk2i = hki2 + hki. hkri can be
calculated using higher order moments similarly.
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Similarly, by applying the replacement recursively, we get:

nr = hkir =) � = hki (9)

Eq. (9) shows that n1, n2, n3 ... form a geometric series. The
growth rate is � = hki. It is worth noting that many topological
properties (e.g., average degree, density etc.) are homogeneous
on random networks. In other words, a randomly chosen sub-
network possesses similar characteristics as the whole network
which is also known as self-similarity.

C. Case 2: Scale-free Networks

Although random networks give a very neat form of growth
rate, many realistic networks are scale-free and the node
degree follows a power-law distribution, i.e., ⇢ / k�↵ with
↵ > 2 [36], [37], [39]. For a power-law distribution, the rth

moment of random variable k equals:

hkri = krmin · ↵� 1

↵� 1� r
8↵ > r + 1 (10)

Note that a power-law distribution is extremely right-skewed
and has a heavy tail. Only the first b↵ � 1c moments exist,
the other moments are infinite. If we plug Eq.(10) into Eq.(4)
and let kmin = 1, the growth rate equals:

� =
1

↵� 3
8↵ > 3. (11)

Eq. (11) means that though most real-life networks have a
well-defined average node degree, their variance is infinite,
which further indicates the growth rate � is unbounded.

For 3<↵<4, the growth rate is bounded but the neighbour-
hood size never converges. It is also interesting to notice when
↵ > 4, nr converges to zero at its limit r ! 1. The reason is
the existence of super hubs with extremely high degrees which
strengthens the small-world effect and makes the network
diameter extremely short. We refer to [40] for more thorough
and interesting discussions on graph topological properties.
For both random network and scale-free network, we can see
neighbourhood growth is at least exponential which sheds light
on the flooding strategy design.

D. Accuracy on Estimating Neighbourhood Growth Rate �

In the previous sections, we have provided closed-form
equations to calculate �. However, while modelling network
growth, we have not identified multiple counting of the same
node to keep our model simple. As one node might be
connected to multiple nodes in the previous ring, we expect
one node to be counted multiple times. To identify how much
inaccuracy this simplification may lead to, we compare the
number of neighbours derived from our model with that in
the actual network. First, we generate random and scale-
free topologies for which we calculate the actual average
neighbourhood at each hop distance, i.e, n̄r. To derive the
nr estimated by the model, we first find the parameter of
a corresponding degree distribution, i.e., Poisson for Erdős-
Rényi random graph and power-law for scale-free graph, by

maximum likelihood estimation.2 After finding the distribu-
tion parameter, we calculate nr using Eq.(9) or Eq.(11) and
compute the deviation at the rth hop as follows:

�r =
(nr � n̄r)

n̄r
. (12)

For both topologies, we set the number of nodes to
N=10000. If a generated network is not connected, we use
the largest component hence V can be smaller than N . The
link probability parameter ⇢ determines the number of edges
in an Erdős-Rényi graph, similar to ↵ in a scale-free network.

Table I summarizes the network properties along with the
deviation, i.e., overestimation ratio. We exclude r=1 in the
table as all nodes are aware of their one hop neighbours
and hence the inaccuracy converges to 0 for all settings. For
almost every setting, the model overestimates the reality only
slightly for r = 2 and r = 3. For V = 339, we attribute the
deviation to both the finite size effect as well as the absence
of random graph property, i.e., the network does not exhibit
Poisson degree distribution as the model assumes. Increasing
hop count makes the model deviate significantly from the
reality, especially when r � l, which is expected as a result of
finite network size. For r = 4, the model captures the reality
quite well for large V and moderate hki – the region where the
random graph property exists but the network is not so densely
connected. The deviation is higher for the settings with higher
hki due to higher clustering and smaller network diameter.

For scale-free networks, Eq.(11) may either underestimate
or overestimate depending on the power-law exponent ↵. For
↵ ⇡ 3, the expected growth rate is very large resulting in
overestimation in neighbourhood (e.g., topology-7 in Table I).
For ↵ > 3, the estimated growth is more stable which leads
to underestimation of the real growth, e.g, topology-8 and
topology-9. We attribute this dispersion to the diversity of the
degree distribution in a scale-free network and limitations of
our model to represent this diversity accurately.

The ISP networks are smaller, ranging from a couple of
hundreds to thousands of nodes [36], which results in a slower
growth after certain hops. To understand this effect, we derive
the growth rate at rth hop as �r = nr+1

nr
and plot them in Fig.2

for eight ISP networks [36]. Recall that in the analysis we have
a single � value for the whole networks with N ! 1. As
the figure shows, the growth rate decreases with increasing
hop due to the finite size of the network. Although the growth
rate is a decreasing function of r, we can observe in Fig. 2
that the neighbourhood keeps growing for several hops, e.g.,
r ⇡ 5. �r takes values below 1 for r greater than average path
length that varies between 3.36 hops to 5.51 hops. In general,
the neighbourhood growth model performs very well within a
moderate scope on both synthetic and realistic networks.

V. OPTIMAL FLOODING RADIUS FOR CONTENT DISCOVERY

In the previous section, we have introduced the first com-
ponent, i.e., the cost model, for scoped flooding. Now, we
move on to modelling the remaining two components: gain
and utility of scoped flooding under a particular scope. Next,

2For scale-free networks, we use the method described in [41].
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TABLE I: Overestimation of the model at each hop for various network graphs. V : Number of nodes and E: Number of nodes
in the generated instance of the graph, l: average path length. Shaded cells represent the cases where the error is below 0.20.

Id Topology V E hki l Clustering Overestimation of the model
r = 2 r = 3 r = 4 r = 5 r = 6

1 Random 339 338 1.994 23.07 0 0.327 1.046 2.359 4.692 9.092
2 Random 8030 9761 2.431 12.03 0 0.152 0.371 0.642 0.972 1.399
3 Random 9426 15068 3.197 8.30 0.00040 0.060 0.130 0.212 0.332 0.565
4 Random 9811 20073 4.091 6.75 0.00049 0.023 0.053 0.106 0.259 0.873
5 Random 9928 25060 5.048 5.88 0.00048 0.004 0.017 0.079 0.419 2.79
6 Random 9989 35020 7.011 4.95 0.00066 0.003 0.030 0.229 2.139 54.124
7 Scale-free, ↵ =3.24 7141 9648 2.70 7.88 0.00057 0.093 0.271 0.529 1.069 2.599
8 Scale-free, ↵ =3.35 5869 7347 2.50 8.66 0.00076 -0.115 -0.174 -0.194 -0.16 0.013
9 Scale-free, ↵ =3.50 5960 7357 2.47 8.99 0.00013 -0.356 -0.555 -0.68 -0.757 -0.794
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Fig. 2: Change in neighbourhood in real ISP networks. Neigh-
bourhood growth is constrained by the finite size of real
networks. The number of neighbours decreases after 4 hops.

we calculate the optimal flooding radius in two cases: with
and without prior knowledge on content availability.

A. Effective Nodes
For a scope r, we are interested in the number of nodes

that will receive the content discovery message to calculate
the expected cost of scoped flooding as well as the chances
of discovering the content. We use the neighbourhood growth
model to derive total number of nodes the flooding messages
will reach. However, given that some nodes might fail and
become unreachable, we need to tune our model in the
previous section according to the failure of each node.

Let � denote the probability that a node is up, namely a
node’s reliability rate. We define the effective nodes n̂r as
the nodes that are working and also reachable on the rth

ring. Since only the effective nodes contribute to flooding, i.e.,
improving content discovery, it is crucial to know the growth
of effective nodes for a specific � to derive the optimal radius.

Given a node has n1 1-hop neighbours, its effective 1-hop
neighbours equals n̂1 = �n1 by assuming a node’s state (up or
down) is independent of each other. Given growth rate �, the
effective 2-hop neighbours equals n̂2 = ��2n1. Similarly, we
can calculate n̂3 using n̂2. Applying iteratively, we calculate
the effective nodes on the rth ring as follows:

n̂r = (��)r�1�n1 = �rnr. (13)

It is easy to see the similarity between Eq.(5) and Eq.(13).
In fact, n̂1 = �n1 is the effective 1-hop neighbours and ��
can be viewed as effective growth rate given nodes may fail

with certain probability (1� �). For low reliability rates, the
gap between the number of effective nodes and the r-hop
neighbourhood will quickly increase with an increasing r.

B. Content Availability as A Priori
Now, let us discuss our gain model. The purpose of flooding

is to increase the chance of discovery by visiting enough
nodes. Hence, we represent the gain from a flooding as the
probability of finding the content. However, the chance of
finding the content depends on the likelihood of the content
being in the network, which is mostly a function of content
popularity and caching scheme. For example, a highly popular
content item is more likely to be present in the cache of a
node compared to a less-popular item. We represent this fact
by content availability metric p which simply represents the
probability that this particular content is stored in the cache
of a node. Note that content availability as well as content
popularity might differ from one region to another as people
might have different interests in different regions. Similarly,
popularity and availability observed by each network node
might differ depending on the node’s location in the network,
e.g., filtering effect due to cache hits before the request reaches
to a node. While our model is valid for all such cases, we
will denote availability by p for the sake of simplicity. Given
n visited nodes, the probability of finding the content of
availability p equals (1�qn) where q=(1�p) is the probability
that the content is not available at a node. On the other
hand, the resulting cost equals to n · c. Then, a bigger n also
introduces larger cost which limits the utility U as below:

U = (1� qn)� n · c. (14)

�U in Eq.(14) is convex as an exponential function is con-
vex and the linear combination of convex functions preserves
convexity. Our aim is to maximize the utility by tuning the
number of visited nodes n. The optimal number of nodes
n⇤ can be calculated simply by finding the value of n which
maximizes (14) as follows:

U 0(n) = 0 =) �qn · ln q � c = 0 =) n⇤ =
ln c� ln ln q�1

ln q
.

After deriving n⇤, we can calculate the optimal radius by
summing up the effective nodes from ring 1 to r and then
solving the equation below:

X

r

n̂r =
X

r

(��)r�1�n1 = n⇤.
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As the above equality might not always hold, we can relax the
equation as:

X

r

(��)r�1�n1 6 n⇤,

to find the smallest value of r that ensures the desired number
of nodes are reached by the content discovery message.

C. Inferring the Content Availability

We previously assumed that the content availability p is
known a priori. Technically, we can set up monitoring nodes to
sample request streams. However, monitoring can be expensive
and sometimes may not even be feasible. Nevertheless, the
probability of finding a specific content in a neighbourhood
is a good indicator for its actual availability, since the more
popular a content is, the more probable it is to find it
among nearby neighbours. The common approach for mod-
elling content availability is to use Che’s approximation [42]
under the assumption that caching logic is Least-Recently-
Used (LRU) and incoming requests follow Independent Ref-
erence Model (IRM). However, this model requires the knowl-
edge of popularity of the content items and relies on the
assumptions on the IRM request model and LRU caching
scheme. For a more generic approach which does not require
much knowledge on the node, we use the Bayesian technique
proposed in [26] to estimate content availability. Main intuition
is that if a content discovery message has followed a path of
i hops, then it shows the fact that none of the visited i nodes
could satisfy this request. Higher values of i signals that the
content’s availability is low. With this insight in mind, a node
estimates the content availability based on the observed hop
count i which can be extracted from the header of the content
discovery message. More formally, Eq.(15) is the probability
density function of p conditioned on previous i negative (i.e.,
unsuccessful) queries.

f(p|i) = Pr(i|p) · f(p)
R 1
0 Pr(i|p) · f(p)dp

, (15)

where Pr(i|p) is the probability that a content discovery
message for a content with availability p travels i hops long.
Assuming that nodes act independently in managing their
cache storage, we calculate Pr(i|p) as Pr(i|p) = qi where
q = 1� p. Next, letting f(p) = 1, then we have:

f(p|i) = qi
R 1
0 qidp

= (i+ 1)qi.

After getting the posterior of p, we can calculate the expected
p after i negative queries as below:

hpi=
Z 1

0
p(i+1)qidp =

Z 1

0
(i+1)(1�q)qidq =

1

i+ 2
. (16)

Note that neither p nor q appears in Eq.(16). Moreover, note
that this approach is not the most accurate one to estimate
the content availability as discussed in [26]. However, it is
practical for realistic networks especially when monitoring is
not possible or the content has never been observed before.

D. Content Availability as Posteriori
Without prior knowledge on content availability, we cannot

apply the conventional optimization as that in Section V-B.
Even with the Bayesian inference introduced in Section V-C,
deciding the optimal radius can be difficult, especially when
the request comes from directly connected clients or does
not carry any information about the number of nodes it has
traversed. To get around this challenge, we let a node flood
its 1-hop neighbours by default to bootstrap the inference on
p. Then, we consider the utility of each ring separately and
adaptively adjust the estimate of p on every ring. The general
mechanism can be summarized as follows:

1. If a request does not contain useful information for
estimating the availability (e.g., number of nodes queried), a
node initiates a flooding to its directly connected neighbours.
A flood message carries three pieces of information: (i) the
node’s local growth rate � = n2

n1
; (ii) number of 1-hop

neighbours n1; and (iii) a counter r to record the number
of hops it has travelled. 3

2. When a node receives a flood message, it first estimates
the availability p using �, n1 and r embedded in the message
by assuming the requested content cannot be found so far
(within r-hop neighbours). More particularly, as follows:

hpi= 1

�r�1�r · n1

Using this estimated p, the node then estimates the potential
utility of the next ring. Based on the estimated utility, the node
decides whether to continue the flooding or terminate.

More specifically, the overall utility of scoped-flooding
is decomposed according to our ring model. Let Rr and
Cr represent the aggregated gain and cost on the rth ring
respectively, the net utility of flooding is as follows:

U =
X

r

Ur =
X

r

(Rr � Cr).

According to Eq.(13), the average cost on the rth ring is:

E(Cr) = n̂rc = �rnrc

and the average value of gross gain Rr is:

E(Rr) = 1 · (1� q�
rnr ) + 0 · q�

rnr = 1� q�
rnr .

The net utility value from the rth ring therefore can be ex-
pressed as the difference between E(Rr) and E(Cr), namely:

Ur = E(Rr)� E(Cr) = (1� q�
rnr )� �rnrc. (17)

An intermediate node forwards the flooding message to its
next-hop neighbours only if the next ring can bring positive net
utility, which can be easily tested with Eq.(17). The flooding
radius should stop increasing whenever the expected utility of
the next ring falls below zero. Technically, this is solved by
calculating the root of Eq.(17) which is the maximum number
of effective nodes on the rth ring. Note that Ur � 0 indicates

3Note that �, n1, and n2 here refer to the local properties of a specific node
instead of the global average. We avoid new notations because the following
derivation on optimal radius applies to both local and global cases which is
independent on the parameters plugged in. As we will show in Section VI,
Dynamic flooding uses local parameters while Static uses global ones.
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c  1�q�
rnr

�rnr
which provides a clear decision boundary on

whether to continue a flooding operation. Given � = 1, which
indicates a stable network of no failures, the root of Eq.(17)
above reduces to: 1� qnr = nrc. The mixture of exponential
and polynomial functions can be solved with the Lambert W
function, which gives:

n⇤
r = � 1

ln q
Wk(

ln q

c
e

ln q
c ) + c�1. (18)

n⇤
r represents the maximum number of nodes that the rth ring

can have in order to keep the cost smaller than the gain. By
plugging Eq.(18) into Eq.(4), we can easily derive the optimal
flooding radius r⇤ as a function of cost, content availability,
and neighbourhood growth rate.

nr = �r�1n1 = n⇤
r =) (r � 1) ln� + lnhki = lnn⇤

r (19)

=) r⇤ =
lnn⇤

r + ln� � lnhki
ln�

(20)

Given 0 < � < 1, we have the same derivation except n̂r

replaces nr in Eq.(19). After some manipulations, we have:

n̂r = �r�r�1n1 = n⇤
r =) r⇤ =

lnn⇤
r + ln� � lnhki
ln � + ln�

. (21)

Obviously, � = 1 indicates ln � = 0, then Eq.(21) reduces to
Eq.(20) as expected. Since ln � is a monotonically increasing
function and only appears in the denominator of Eq.(21), r⇤ is
hence a decreasing function of �. In practise, Eq.(21) means
the flooding radius tends to be bigger in an unstable network
to achieve the same gain. Moreover, for a given reliability �,
the optimal radius is a decreasing function of growth rate �.

VI. TWO FLOODING STRATEGIES: STATIC VS. DYNAMIC
FLOODING

We first discuss the design rationale for a scoped-flooding
scheme, then introduce two strategies for later comparison.

Design Guidelines: A good flooding strategy requires that: (1)
a node is aware of its neighbourhood with an accurate topo-
logical inference; (2) a node is aware of content availability
with an accurate statistical inference on user request streams.
These two awareness (solved in Section IV and V respectively)
together enable a node to decide its optimal flooding radius
based on the estimated utility. Additionally, the flooding radius
should be adjusted in different parts of the network according
to local topological properties as the network structure may
not be homogeneous, i.e., some parts are denser and some
parts are sparser (regarding degree distribution). Hence, a
predetermined radius may lead to suboptimal performance.

Static Flooding: Static flooding uses a predetermined and
fixed flooding radius for all nodes. The flooding radius is
optimized over the whole network topology by e.g., the
network operator for each availability value. The average
growth rate is calculated using the average number of 1-hop
neighbours and 2-hop neighbours of the whole network then
plugged into either Eq.(20) or Eq.(21) to derive the optimal
radius. Therefore, static flooding ignores the heterogeneity of
the topological properties in different areas of the network.
Static flooding is simple and popular but it is only suitable for

random networks wherein the network structure is homoge-
neous and nodes have similar growth rates. We include static
flooding in our evaluation as a baseline for comparison.

Dynamic Flooding: Compared to static flooding, dynamic
flooding is more attendant to the differences among the nodes
and it assigns a specific radius for each node individually.
Considering that the degree distribution in a scale-free network
is not homogeneous, dynamic flooding lets each node use its
own 1-hop and 2-hop neighbours to calculate the local growth
rate. Then, each node optimises locally within its neighbour-
hood, hence each has its own optimal flooding radius. Such
a strategy considers a node’s position in a network. Nodes in
denser areas tend to have smaller radius while nodes in sparser
areas tend to have bigger radius.

For content with lower availability, a node may prefer
routing toward the original content provider rather than ini-
tiating flooding. To decide on whether apply scoped-flooding
or route towards the original content provider, the node needs
to calculate the expected gain and loss. For this purpose, by
letting r = 1, Eq.(17) calculates the availability threshold of
whether initiating a flooding as below:

U1 > 0 =) q�n1 < 1� �n1c

p > 1� �n1
p
1� �n1c. (22)

If the availability falls far below the threshold, a node will not
flood the request. If content availability is unknown, dynamic
strategy floods its 1-hop neighbours by default to bootstrap
the inference as described in Section V-D. As we can expect,
without content availability information, dynamic flooding is
supposed to introduce more overhead due to its aggressive 1-
hop flooding. However, the evaluation in Section VII shows
that such overhead is almost negligible.

VII. PERFORMANCE EVALUATION

We evaluate the two flooding strategies on various topolo-
gies to gain a comprehensive understanding of their pros
and cons. Our evaluations focus on two network models:
random networks and scale-free networks. Both models have
a network of 10,000 nodes and 60,000 edges but their degree
distributions are different, namely one is Poisson and the
other is power-law. We experimented with a large number of
network parameters and various availability and cost values
to guarantee the robustness and consistency of our claims.
In our evaluations, we used both Matlab and LiteLab [43]
for calculating results and simulating scoped-flooding. Nodes
apply LRU cache replacement policy.

A. Impact of Availability and Cost
Fig. 3 depicts the model behaviours with different cost and

availability parameters. In Fig. 3a and 3b, the curves are the
decision boundaries below which a node will initiate flooding
for given cost and availability values. The lower cost for
higher nr shows that a node with a large neighbourhood is
more parsimonious in flooding compared to a node with a
smaller neighbourhood, and only initiates flooding for lower
costs. Fig. 3b is a condensed version of Fig. 3a due to setting
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Fig. 3: Ring model behaviours with different p, c, and �.

� = 0.5, indicating that an unstable network cannot tolerate
high cost values. For both figures, the steep increase in the in-
terval [0, 0.4] indicates the strong preference on high available
content in scoped-flooding. Fig. 3c indicates that a reliable
network has high tolerance on cost especially for popular
content, which also explains the difference between Fig. 3a and
Fig. 3b. Fig. 3d shows when the cost slightly increases from
its minimum (i.e., zero), the optimal number of neighbours
drops drastically regardless of content availability. After a
certain point, e.g., 5 or 6 nodes, the figure shows a slower
decrease for content with high availability. Fig. 3d indicates
that for higher availability content, it is worth flooding to
more neighbours since the content will be discovered with
high probability therefore the gain is guaranteed. For low
availability content, even with relatively low cost, the flooding
is rather conservative.

Next, we analyze how nodes in a real network topology
decide to start flooding or fall backs to default algorithm,
which is on-path routing toward the content publisher. For
this purpose, we use network topologies from Rocketfuel
ISP networks and consider three content availabilities—low,
medium, and high with availability values p=0.1, p=0.3,
p=0.5 as an example. We set the cost as c = 0.1. Using Monte
Carlo simulations of 104 runs, we derive the fraction of times
each node initiates flooding for the incoming content discovery
messages. For this decision, we use Eq.(22). Each node
estimates the availability of the content by collecting reports
periodically from its neighbours. Simply, content availability
equals to the ratio of nodes storing the requested content over
total number of neighbours. At each Monte Carlo run, we
change the content placement and put the content to each node
with probability p. We want to investigate: (i) whether scoped-
flooding is preferred or not, (ii) how the availability affects it,

(a) Flooding decision for low avail-
ability.

(b) Correctness of scoped flooding
decisions for low availability.

(c) Flooding decision for high
availability.

(d) Correctness of scoped flooding
decisions for high availability.

Fig. 4: In a real topology, the probability that a node decides
to initiate scoped flooding and the probability that the given
decision, i.e., flood or terminate, agrees with the decision
under exact knowledge on the content availability.

(iii) which nodes prefer flooding which not, and (iv) how does
the inaccuracy in availability estimation affect the decision.
For (iv), we take the decision as correct that is based on real
availability and compare it with the decision under estimated
availability.

We report the median of the runs for AS-2914 as other
topologies exhibit similar behaviour. Fig.4 depicts the prob-
ability that scoped-flooding is initiated as well as the proba-
bility of the decision being correct. As observed in Fig.4a,
high degree nodes refrain them from flooding as it would
be very wasteful. Low degree nodes are also reluctant to
flooding. We attribute this behaviour to the estimated low
availability of the content from their neighbourhood. If we
check the accuracy of such decisions, we see in Fig.4b that the
given decisions are correct with high probability. For a high-
availability content, high-degree nodes are again conservative
and terminate flooding whereas the lower degree nodes are
more willing to flood as there is a higher chance that the
content will be in the neighbourhood. As Fig.4d, the scoped
flooding decisions have higher likelihood of being correct
compared to the content with low availability. For low-degree
nodes, the accuracy of availability estimations is expected to
be lower due to lower number of samples from the node
neighbourhood. Consequently, we observe lower correctness
in scoped-flooding decisions.

B. Flooding Radius Distribution
Fig. 5a shows the CDF of nodes’ optimal radii using

different p on both random (upper figure) and scale-fee (lower
figure) networks. By increasing p from 0.1 to 0.9, the CDF
curves shift toward right indicating high available content is
worth large radius. In random network, the shapes of the



10

CD
F

0

0.5

1
Random

p = 0.1 p = 0.9

Optimal radius
1 1.5 2 2.5 3 3.5

CD
F

0

0.5

1
Scale-free

Content with higher p

(a) CDF of radius with different p.

Optimal radius
1.5 2 2.5 3 3.5

CD
F

0

0.2

0.4

0.6

0.8

1
Random
Scale-free

(b) CDF of optimal radius.

Optimal radius
1.5 2 2.5 3 3.5

Fr
eq

ue
nc

y

0

200

400

600

800

1000

Static r = 2.320

Static r = 2.784Random
Scale-free

(c) Histogram of optimal radius.

Log(optimal radius)
0.2 0.4 0.6 0.8 1 1.2 1.4

Lo
g(

be
tw

ee
nn

es
s 

ce
nt

ra
lit

y)

-14

-12

-10

-8

-6

-4

-2

Pearson correlation = -0.7982

Scale-free

(d) Radius vs. betw. centrality.

Fig. 5: Optimal radius distribution in dynamic flooding, the radius negatively correlates to nodes’ betweenness centrality.

curves are mostly identical, whereas in scale-free network,
the curves are more stretched for higher p values, which
indicates more heterogeneity in scale-free networks. Fig. 5b
and 5c specifically plot the radius distributions for p = 0.8.
The scale-free network has smaller flooding radii than the
random network in both dynamic and static flooding. The
two red vertical lines in Fig. 5c represent the optimal radii of
static flooding, i.e., 2.320 for scale-free and 2.783 for random
network. For dynamic flooding, the mean and variance of the
radii are 2.447 and 0.094 on the scale-free (red area), and
2.805 and 0.014 on the random (blue area). Static flooding
ignores the difference of topological characteristics between
two nodes. Fig. 5b shows that over 60% of the nodes in scale-
free network have a radius less than 2.5 whereas almost all
the nodes’ radii in random network are bigger than 2.5. In
both Fig. 5b and 5c, the left tail of scale-free network is
heavier than that of random network due to the existence of
high-degree nodes. The radius distribution of random network
is more condensed in a smaller range (reflected as a small
variance 0.014) because of its homogeneous structure.

There is a relatively strong negative correlation between
optimal radius and node’s degree as well as optimal radius
and node’s betweenness centrality. We report the results for
betweenness centrality in Fig. 5d as a function of radius for
the scale-free network. Note the logarithmic scale in the axis.
We attribute the negative correlation to the nodes with high
betweenness centrality that are located in the well-connected
parts of the network wherein the link density is very high and

therefore the radius is small due to the high growth rate.

C. Utility and Its Improvement Distribution
Inspired by [44], Fig.6a and 6b plot betweenness centrality

as a function of a node’s utility. Please note that Fig.6b is log-
log plot. We observe a strong negative correlation between
the two variables, utility and betweenness centrality of the
node. The corresponding Pearson correlation coefficient can
reach �0.93 and �0.80 for random and scale-free network,
respectively. The reason for the negative correlation is that, in
the dense area where a node has a high betweenness centrality
value, its neighbourhood size is usually large. Although the ra-
dius is also small, the node may still include more neighbours
than necessary (the optimum) which renders a higher cost and
drags down the net utility. Sometimes, even 1-hop neighbours
include too many nodes, which in fact highlights the need for
more conservative flooding schemes such as selective flooding
to only some of the node’s neighbours based on some criteria.
As the growth rate in the sparser area is much lower, nodes
have a better control over the neighbourhood size by fine-
tuning their radius leading to lower cost and better net utility.

Dynamic flooding aims at providing better system perfor-
mance than static flooding in terms of higher utility value.
To compare dynamic flooding against static one, we let
Udy denote the optimal utility achieved by dynamic flooding
and Ust by static flooding. Then, we calculate the utility
improvement as: Udy�Ust

Ust
. Fig. 6c plots the CDF of the

utility improvement. We notice that dynamic flooding is less



11

Utility
1.8 2 2.2 2.4 2.6 2.8

Be
tw

ee
nn

es
s 

ce
nt

ra
lit

y

#10-3

0

1

2

3

4

Pearson correlation = -0.9311

Random
Regression line

(a) Random network
Log(utility)

-0.5 0 0.5 1 1.5

Lo
g(

be
tw

ee
nn

es
s 

ce
nt

ra
lit

y)

-12

-10

-8

-6

-4

-2

Pearson correlation = -0.8061

Scale-free
Regression line

(b) Scale-free network
Improvement in utility

0 0.2 0.4 0.6

C
D

F

0.7

0.75

0.8

0.85

0.9

0.95

1

Random
Scale-free

(c) Dynamic against static

Improvement of utility
0 0.05 0.1 0.15 0.2 0.25

G
ro

w
th

 ra
te

 -

4

6

8

10

12
Random

(d) Random network
Improvement of utility

0 0.1 0.2 0.3 0.4
G

ro
w

th
 ra

te
 -

5

10

15

20

25
Scale-free

(e) Scale-free network

Fig. 6: In dynamic flooding, the utility distribution strongly correlates to nodes’ positions. However, regarding improvements,
the strength of correlation between the significance of improvement and the position depends on the network model.

effective on random networks, only 10% of the nodes actually
improve their performance and over half have less than 10%
improvement. Such lower effectiveness of dynamic flooding
is due to the homogeneous structure of the random network.
As we showed in the previous section, the static optimal
radius deviates from the dynamic optimal radius only slightly
for a random network. Hence, the improvement in utility is
marginal. On the other hand, nodes in a scale-free network
have much more significant utility improvement, namely about
30% of the nodes are improved, among which over 60% have
larger than 10% improvement.

Specifically, we take a closer look at those nodes with
improved utility, i.e., the 10% in the random and 30% in the
scale-free network. Fig. 6d and 6e plot local growth rate � as a
function of improvement. Note the difference in both X-range
and Y-range of the two figures. As for X-range, the utility
shows a wider range of improvement in scale-free networks
due to the diverse growth rate of the nodes shown on the
Y-axis. Scale-free network has a larger � due to hub nodes
compared to the random network with more homogeneous
node characteristics. Fig.6d shows that the correlation between
� and the utility improvement on random network is close to
zero, more precisely �0.0031, indicating that the significance
of improvement is irrelevant of a node’s growth rate and its
position in the network. Meanwhile, such correlation on scale-
free network is much stronger, with Pearson correlation of
�0.5273. The results show that nodes with high growth rate
are less likely to have significant benefit by using dynamic
flooding. The reason is that the optimal radii of the nodes with
high � values in both static and dynamic flooding are small

TABLE II: Results for each metric are in the format of
network-wide—static—dynamic flooding. The cost is mea-
sured by the # of flood messages and normalized with the
maximum value.

AS Byte hit rate Cost Avg. hops
nw st dy nw st dy nw st dy

1239 0.44 0.40 0.43 1.0 0.27 0.28 1.90 1.60 1.62
2914 0.49 0.42 0.47 1.0 0.31 0.32 1.75 1.55 1.58
3356 0.42 0.39 0.42 1.0 0.25 0.27 2.02 1.69 1.74
7018 0.47 0.41 0.45 1.0 0.26 0.28 1.87 1.54 1.63
Guifi 0.51 0.44 0.49 1.0 0.22 0.23 1.71 1.32 1.38

and close to each other. However, dynamic flooding usually
significantly increases the radius of the nodes with low �.

D. Flooding in the Wild
To confirm our analysis on realistic networks, we choose

four realistic ISPs along with one community network (i.e.,
Guifi Catalunya region) [36], [37] to compare network-wide,
static, and dynamic flooding. Note that dynamic flooding is not
aware of content availability but use the inference technique
in the evaluations. In case there are multiple components in a
network, we use the biggest one. The smallest network (AS
3356) has 3,107 nodes and 6,097 edges while the biggest
one (AS 7018) has 9,732 nodes and 10,047 edges. Each
node is equipped with a 4 GB cache using LRU for cache
replacement, and assigned a pair of geographical coordinates
according to the topology traces. The content set is based on
the Youtube Entertainment Category trace [45] which contains
1,687,506 objects (average size is 8.0 MB and aggregated size
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is 12.87 TB). The trace contains video id, length, views, rating
and etc. All the nodes of degree 1 are considered as content
requesters while 10 to 20 content providers (proportional to
the network size) are randomly selected among the nodes in
the network. A node cannot be a requester and a provider at
the same time. To take into account both temporal and spatial
locality, we use Hawkes process-based algorithm [46] with
different spatial locality factors [0, 1) to generate user request
streams. Locality factor 0 indicates the request pattern reduces
to Independent Reference Model, 1 indicates high spatial
localisation. The “warm-up” period for pre-filling the caches
is excluded from an evaluation and the result is averaged over
at least 50 runs.

Table II reports the results with spatial locality factor 0.5.
Although network-wide flooding always achieves the best byte
hit rate, the improvement is rather marginal over dynamic
flooding (less than 5%). Such a small gain in cache hits is
at the price of 2⇠3 times increase in the number of control
messages as the second column shows. Intuitively, without
prior knowledge on content availability, the performance of
dynamic flooding is mostly affected by network topology and
should be worse than static flooding which can exploit such
knowledge. The results however show that dynamic flooding
consistently outperforms static one, which further attests the
effectiveness of Bayesian inference and justifies the design of
dynamic flooding. Compared to static one, dynamic flooding
has slightly higher cost because it tends to explore more nodes
(recall the default flooding to 1-hop neighbours in dynamic
flooding), which explains its gain in byte hit rate. The third
column shows the average hops between a requester and the
first discovered content. Network-wide flooding has the worst
values and static flooding is slightly higher than dynamic one.
In all cases, most content are discovered within 2 hops.

We investigate the effects of spatial locality by varying the
factor between 0 and 1. For network-wide flooding, spatial
locality does not appear to have any noticeable impacts on the
byte hit rate and the cost except that high factor values lead
to shorter average hops. Higher spatial locality improves byte
hit rate and average hop count in both static and dynamic
flooding. For dynamic flooding, by increasing the locality
factor from 0.1 to 0.9, the byte hit rate improves 9%⇠22% and
essentially reaches the performance of network-wide flooding.
The average hops metric has 7%⇠19% improvement. In
terms of byte hit rate, the difference of all three strategies
becomes smaller as the locality factor increases but dynamic
flooding consistently outperforms static one by at least 7.5%.
Meanwhile, the cost of all three strategies almost remain
unchanged. The reason is that content availability and local
topological property are the determinant factors of the cost
(due to being a function of p and r) in static and dynamic
flooding respectively, neither will be affected by changing the
locality factor.

E. Summary and Discussion

Our results indicate that dynamic flooding is more effective
on the networks of heterogeneous topological structure, and
most of the gains come from sparse areas wherein local

growth rate is low, namely at network edges. The optimal
flooding radius in a dense area is small and nodes suffer
from high flooding cost. On realistic networks for which the
evaluations further take the spatial locality of content into
account, dynamic flooding is consistently superior to static
one even without prior knowledge on content availability, and
quickly approaches the byte hit rate of network-wide flooding
but with much smaller cost in control messages.

The small cost of dynamic flooding compared to the static
one can be further eliminated by keeping track of the success
rate of flooding to enhance the inference on availability, so
that dynamic flooding is able to avoid unnecessary flooding
on unpopular content. Developing better inference techniques
of content availability is reserved as our future work.

The neighbourhood growth model and results presented
in this paper have profound implications on the design of
caching algorithms in a communication network. Especially
for the collaborative caching algorithms such as [13], [47],
the nodes collaboratively exchange information to improve
their local knowledge on the global content distribution in
the network, which can further help them in making better
caching decisions to increase hit rate and reduce the traffic
footprint. Even though the scoped-flooding can accelerate the
dissemination of information on content distribution, it also
introduces the communication cost.

If a collaborative caching algorithm utilizes the global
optimization, the induced communication cost from network-
wide flooding can be very high. But, our results indicate that
network-wide global optimisation is not needed in practise and
small collaboration radius can already lead to nearly optimal
solutions as shown in [47]. With small collaboration radius,
we can significantly reduce the communication overhead.

VIII. CONCLUSION

This paper aims to comprehend scoped-flooding for content
discovery in an information-centric network. We first proposed
a model to mimic how a content discovery message spreads in
a network. Next, using the proposed ring model, we studied
the functional relation between the neighbourhood growth and
flooding radius, based on which we derived the optimal search
radius. With the acquired insights from the theoretical analysis,
we proposed two strategies, i.e., static and dynamic flooding,
for setting the scope of the content discovery messages. Both
our theoretical analysis and empirical evaluations suggest that
due to the exponential growth of neighbourhood size, the
optimal flooding radius is usually very small (i.e., a couple
of hops). Most of the gains of flooding come from the sparse
area at the network edge where the neighbourhood growth
rate is low. To certain extent, our results justify the rationale
of deploying caches at network edge from content discovery
perspective. Dynamic flooding is consistently superior to static
one, especially on scale-free networks. With strong spatial lo-
cality, the performance of dynamic flooding quickly converges
to network-wide flooding but with much smaller cost.

As future work, we acknowledge that the following aspects
need further investigation: (1) Our neighbourhood growth
model does not take clustering coefficient into account which
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leads to overestimation in small networks. (2) Our utility
model assumes sub-linear gain and linear cost which requires
further reality checks. (3) Other in-network caching schemes
can be more effective than simple LRU and a thorough
comparison is needed to gain a deeper understanding.
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