ICON: Intelligent Container Overlays

A. Zavodovski, N. Mohan, S. Bayhan, W. Wong and J. Kangasharju

HotNets 2018, November 15-16, 2018

NO!

NO!

Open Standards

NO!

Open Standards Decentralized Solution

NO!

Open Standards Decentralized Solution

Something like the Internet!

Motivation

- Growing demand for edge computing, making edge pervasive
- Applications should unfold towards the edge autonomously
- Managing applications by setting only high level objectives
- Autonomous adaptation to the changing environment

Motivation

- Growing demand for edge computing, making edge pervasive
- Applications should unfold towards the edge autonomously
- Managing applications by setting only high level objectives
- Autonomous adaptation to the changing environment
- Towards common standards of self-organized service provisioning on global scale

Motivation

- Growing demand for edge computing, making edge pervasive
- Applications should unfold towards the edge autonomously
- Managing applications by setting only high level objectives
- Autonomous adaptation to the changing environment
- Towards common standards of self-organized service provisioning on global scale
- Not only about the edge!

ICON: Intelligent Container

- Virtualized entity containing a service
 - Built on top of Docker container, VM, unikernel, etc.
 - Oriented towards microservices architecture (application is a collection of loosely coupled services)

ICON: Intelligent Container

- Virtualized entity containing a service
 - Built on top of Docker container, VM, unikernel, etc.
 - Oriented towards microservices architecture (application is a collection of loosely coupled services)

Capable of observing the environment

- Monitors where incoming flows come from
- Discovers potential deployment locations

ICON: Intelligent Container

- Virtualized entity containing a service
 - Built on top of Docker container, VM, unikernel, etc.
 - Oriented towards microservices architecture (application is a collection of loosely coupled services)

Capable of observing the environment

- Monitors where incoming flows come from
- Discovers potential deployment locations
- Capable of taking decisions and acting autonomously
 - Migrates or replicates closer to end-users to satisfy, e.g., latency objectives
 - Terminates if utility falls below predefined threshold

Initially, ICON is in the cloud

• One or multiple origination points

- Initially, ICON is in the cloud
 - One or multiple origination points
- ICON monitors incoming flows
 - Where requests are coming from?

- Initially, ICON is in the cloud
 - One or multiple origination points
- ICON monitors incoming flowsWhere requests are coming from?
- ICON discovers deployment locations
 - In the domain of end-users or on a path to it

- Initially, ICON is in the cloud
 - One or multiple origination points
- ICON monitors incoming flows
 - Where requests are coming from?
- ICON discovers deployment locations
 - In the domain of end-users or on a path to it
- ICON can take autonomous decisions
 - Deploy replica of itself

- Initially, ICON is in the cloud
 - One or multiple origination points
- ICON monitors incoming flows
 - Where requests are coming from?
- ICON discovers deployment locations
 - In the domain of end-users or on a path to it
- ICON can take autonomous decisions
 - Deploy replica of itself

The Operation of ICON

- Initially, ICON is in the cloud
 - One or multiple origination points
- ICON monitors incoming flows
 - Where requests are coming from?
- ICON discovers deployment locations
 - In the domain of end-users or on a path to it
- ICON can take autonomous decisions
 - Deploy replica of itself
 - Migrate closer to the end-users

- Tree is formed organically as ICONs deploy replicas of themselves
 - Efficient for information propagation
- Coordination
- Control
- Other topologies are possible (e.g., swarm)

Independent Edge Providers (IEPs)

- Facility where ICON can deploy itself
- Can be:
 - Facility operated by a cloud provider (e.g., Cloudfront, Azure Stack)
 - Telco edge server (MEC)
 - Crowdsourced: iExec, Golem, etc.?
- Runs container yard application
 - Built on top of e.g., Kubernetes, Mesos or Docker Swarm
 - ICON negotiates with the yard on deployment timeslot, hardware resources, price, etc.
- Contractual agreements and transactions
 - Smart contracts are possible option

	~

Independent Edge Providers (IEPs)

- Facility where ICON can deploy itself
- Can be:
 - Facility operated by a cloud provider (e.g., Cloudfront, Azure Stack)
 - Telco edge server (MEC)
 - Crowdsourced: iExec, Golem, etc.?
- Runs container yard application
 - Built on top of e.g., Kubernetes, Mesos or Docker Swarm
 - ICON negotiates with the yard on deployment timeslot, hardware resources, price, etc.
- Contractual agreements and transactions
 - Smart contracts are possible option

Anyone can establish an IEP

 Assumption: IEPs add edge SRV records to authoritative DNS servers of their domains

- Assumption: IEPs add edge SRV records to authoritative DNS servers of their domains
- Perform tomography
 - Traceroute to end-users

- Assumption: IEPs add edge SRV records to authoritative DNS servers of their domains
- Perform tomography
 - Traceroute to end-users
- Identify on-path domains

- Assumption: IEPs add edge SRV records to authoritative DNS servers of their domains
- Perform tomography
 - Traceroute to end-users
- Identify on-path domains
- Perform SRV query

- Assumption: IEPs add edge SRV records to authoritative DNS servers of their domains
- Perform tomography
 - Traceroute to end-users
- Identify on-path domains
- Perform SRV query

Discovery of IEPs

- Assumption: IEPs add edge SRV records to authoritative DNS servers of their domains
- Perform tomography
 - Traceroute to end-users
- Identify on-path domains
- Perform SRV query

Intelligence of ICONs

- Easy version: Governed by utility function
 - Weights are "control knobs", e.g., budget vs. latency
 - Application owner can also "hotswap" the entire utility function
- Thresholds: When expected utility of an action exceeds certain boundary value:
 - Replicate
 - Migrate
 - Terminate
- More complex version: Overlay forms a picture of the world and adapts the network as a whole

- Intelligence
 - What kind of intelligence do ICONs need?

- Intelligence
 - What kind of intelligence do ICONs need?
- Discovery of the closest ICON
 - How new clients will discover the ICON which is closest to them?

- Intelligence
 - What kind of intelligence do ICONs need?
- Discovery of the closest ICON
 - How new clients will discover the ICON which is closest to them?
- Security
 - Trusted execution environments?

- Intelligence
 - What kind of intelligence do ICONs need?
- Discovery of the closest ICON
 - How new clients will discover the ICON which is closest to them?
- Security
 - Trusted execution environments?
- Contractual agreement between ICON and independent edge providers
 - Are smart contracts the best option?

• Implementing *container yard* for hosting ICONs

- Implementing *container yard* for hosting ICONs
- Negotiation protocol
 - Like all routers support IP, facilities providing capacity to run services should support some common protocol to negotiate on new service deployment

- Implementing *container yard* for hosting ICONs
- Negotiation protocol
 - Like all routers support IP, facilities providing capacity to run services should support some common protocol to negotiate on new service deployment
- Sophisticated intelligence
 - Proactively predicting where from most of the requests will come

- Implementing *container yard* for hosting ICONs
- Negotiation protocol
 - Like all routers support IP, facilities providing capacity to run services should support some common protocol to negotiate on new service deployment
- Sophisticated intelligence
 - Proactively predicting where from most of the requests will come
- Game theoretic analysis
 - What if two (or more) competing applications are deployed using ICONs?

- Implementing *container yard* for hosting ICONs
- Negotiation protocol
 - Like all routers support IP, facilities providing capacity to run services should support some common protocol to negotiate on new service deployment
- Sophisticated intelligence
 - Proactively predicting where from most of the requests will come
- Game theoretic analysis
 - What if two (or more) competing applications are deployed using ICONs?
- Specialized ICONs forming chains of services, and multitier apps
 - Not limited to edge, e.g., a database may also be packed as ICON
 - How to coordinate?

- IEPs to tackle growing demand for edge computing
 - Less cloud monopoly

- IEPs to tackle growing demand for edge computing
 - Less cloud monopoly
- Open infrastructure standards to enable ad hoc deployment of services on global scale

- IEPs to tackle growing demand for edge computing
 - Less cloud monopoly
- Open infrastructure standards to enable ad hoc deployment of services on global scale
- Reducing administrative overhead: applications move across the network themselves following high level objectives

- IEPs to tackle growing demand for edge computing
 - Less cloud monopoly
- Open infrastructure standards to enable ad hoc deployment of services on global scale
- Reducing administrative overhead: applications move across the network themselves following high level objectives
- Taking advantage of autonomous local decision-making leads to faster adaptation to changing environment

- IEPs to tackle growing demand for edge computing
 - Less cloud monopoly
- Open infrastructure standards to enable ad hoc deployment of services on global scale
- Reducing administrative overhead: applications move across the network themselves following high level objectives
- Taking advantage of autonomous local decision-making leads to faster adaptation to changing environment

Thank you!

- IEPs to tackle growing demand for edge computing
 - Less cloud monopoly
- Open infrastructure standards to enable ad hoc deployment of services on global scale
- Reducing administrative overhead: applications move across the network themselves following high level objectives
- Taking advantage of autonomous local decision-making leads to faster adaptation to changing environment

Thank you!

aleksandr.zavodovski@helsinki.fi