Two Hops or More: On Hop Limited Search in Opportunistic Networks

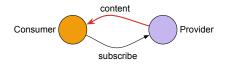
Suzan Bayhan[†], Esa Hyytiä[‡], Jussi Kangasharju[†] and Jörg Ott^{‡, \star}

University of Helsinki, Finland [†], Aalto University, Finland [‡], and Technical University of Munich, Germany *****

MSWiM 2015

 Useful information often available locally due to spatial locality, homophily, etc. but may not be accessible using the convential techniques (i.e., Internet)

- Useful information often available locally due to spatial locality, homophily, etc. but may not be accessible using the convential techniques (i.e., Internet)
- Find content using opportunistic search

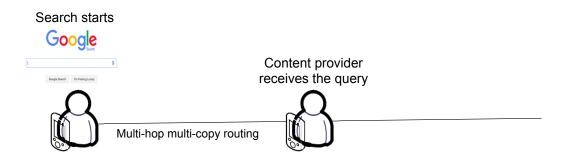


- Useful information often available locally due to spatial locality, homophily, etc. but may not be accessible using the convential techniques (i.e., Internet)
- Find content using opportunistic search
- No Google-like service!

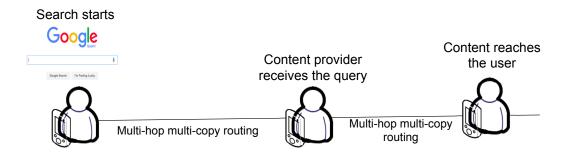


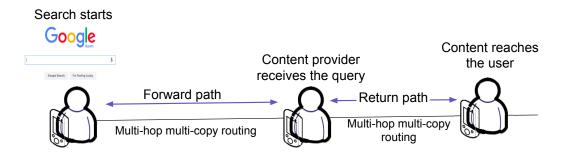
- Useful information often available locally due to spatial locality, homophily, etc. but may not be accessible using the convential techniques (i.e., Internet)
- Find content using opportunistic search
- No Google-like service!
 —> Multi-copy multi-hop routing (increased redundancy)
- Previous research: publish/subscribe (push approach)

- Useful information often available locally due to spatial locality, homophily, etc. but may not be accessible using the convential techniques (i.e., Internet)
- Find content using opportunistic search
- No Google-like service!
 —> Multi-copy multi-hop routing (increased redundancy)
- Previous research: publish/subscribe (push approach)



• Pull: more natural like desktop search, receiver driven





We want to understand the effect of hop count on:

• search success ratio, search completion time, search cost

We want to understand the effect of hop count on:

· search success ratio, search completion time, search cost

	f Human Mobility on rtunistic Forwarding Algorithms	Less is More: Long Paths do not Help the Convergence of Social-Oblivious Forwarding in Opportunistic Networks	BER TAAANCTISM ON VERKTAAR TECHNELOOT, VIE. 44, NO. 3, XIN 2011. 214
*Thomson Research 46 quai A. Le Gullo 92048 Boelogne FRANCE augustin.chaintreau#thomson.net	Proweroft", Christophe Diott, Richard Gassi, and James Scott", "University of Cambridge ¹ Intel Research 15 JJ Thermoto Avenue Cambridge, CB3 OFD, UK pan.hubel.com.or.uk.pon.erovertoft/stil.com.or.uk richard commission.com.or.uk.pontstilteria.com	Chiara Boldrini Marco Conti Andrea Pasaarella IIT-OM IIT-OM IIT-OM Ye G. Monzat I YE G. Monzat I Ve G. Monzat I Ve G. Monzat I Ve G. Monzat I Ve G. Monzat I Ve G. Monzat I Ohiara boldrini@Ht.on.k matrox.conti@Ht.on.k	DelQue: A Socially Aware Delegation Query Scheme in Delay-Tolerant Networks Jait Pin Souder More IEEE Tring Can More IEEE You Dr. The Mark Mark IEEE Advanta San
christoph-dicottomace.net Abstron-Shohyng transfer oppertuality wirakes devices carried by humans, we obs distribution of the inter-constant tim, that gap opparing the orecastic of the same pair cability a heavy tail such as new of a power site district experimented data starts. It is a the exponential decay implied by most math	in here it is a the time between two transfer apportunities, were that the for the same devices. We observe in the six tarea that it is for first the interaction transfer that the same that the bars over a the interaction of the same transfer that the same transfer law, over a the interaction of the discription can be compared to the same transfer that the same transfer that the same transfer that the same transfer same transfer that the same transfer tha	JUST	Annex-6. Also define a structure d'MCs. Including the structure defines a structure d'Annex (Structure de la constructure de la constructure de la constructure de structure de la constructure de la constructure de la constructure de la constructure de structure de la constructure de la constructure de la constructure de la constructure de la constructure de la constructure de la constructure de la constructure de la constructure de

 Decision on hop count is not clear in the literature: two hops or more?

• Content: scarce item or densely available item?

② User's tolerated waiting time: low patience or tolerant to delay?

Search cost: avoid bandwidth waste and battery consumption

• Content: scarce item or densely available item?

- Content availability: α
- User's tolerated waiting time: low patience or tolerant to delay?
 TTL of the message: T
- Search cost: avoid bandwidth waste and battery consumption
 hop-limit: h

Modeling of hop-limited search

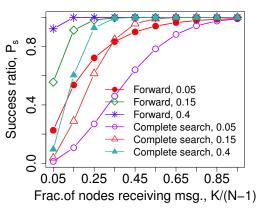
- Total *N* nodes in the network
- Content availability $\boldsymbol{\alpha}$
- Assume only K messages are allowed for forward path

Modeling of hop-limited search

- Total N nodes in the network
- Content availability $\boldsymbol{\alpha}$
- Assume only *K* messages are allowed for forward path

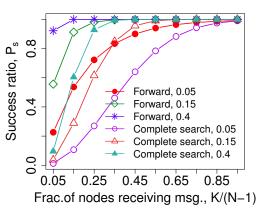
$$P_s = \sum_{k=1}^{K} Pr\{\text{k content providers are discovered}\} \\ \times Pr\{\text{at least one of k responses reaches searching node}\}.$$

Modeling of hop-limited search

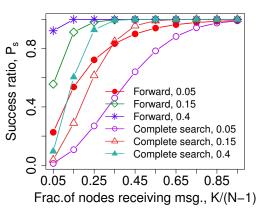

- Total N nodes in the network
- Content availability $\boldsymbol{\alpha}$
- Assume only *K* messages are allowed for forward path

$$P_s = \sum_{k=1}^{K} Pr\{\text{k content providers are discovered}\} \\ \times Pr\{\text{at least one of k responses reaches searching node}\}.$$

$$P_s = 1 - (1 - \alpha \gamma)^K$$
 where $\gamma = \frac{K}{N - 1}$

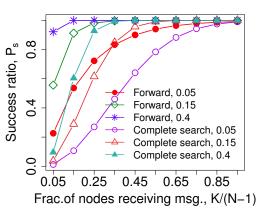


$$P_s = 1 - (1 - \alpha \gamma)^K$$


$$P_s = 1 - (1 - \alpha \gamma)^K$$

• Content availability α (available or estimated)

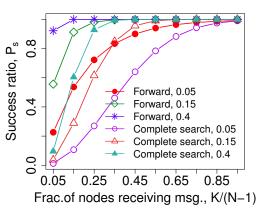
$$P_s = 1 - (1 - \alpha \gamma)^K$$



• Content availability α (available or estimated)

•
$$\gamma = \frac{K}{N-1}$$

$$P_s = 1 - (1 - \alpha \gamma)^K$$

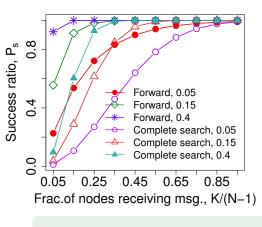


Alto University University of control tracks Institutions of control tracks Institutions in control tracks Institutions Insti - Content availability α (available or estimated)

•
$$\gamma = \frac{K}{N-1}$$

• *K*: $f(\text{hop limit, message lifetime}) \rightarrow N_h(T)$

$$P_s = 1 - (1 - \alpha \gamma)^K$$


- Content availability α (available or estimated)

•
$$\gamma = \frac{K}{N-1}$$

.

- *K*: $f(\text{hop limit, message lifetime}) \rightarrow N_h(T)$
- $N_h(T)$:
 - for static networks, see Wang et. al ICN 2015
 - difficult to model realistically for mobile networks

$$P_s = 1 - (1 - \alpha \gamma)^K$$

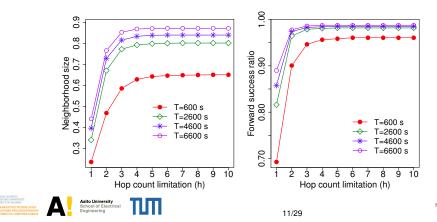
- Content availability α (available or estimated)

•
$$\gamma = \frac{K}{N-1}$$

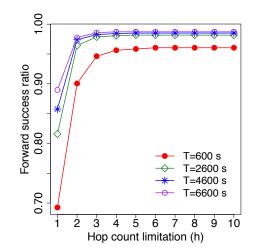
- *K*: $f(\text{hop limit, message lifetime}) \rightarrow N_h(T)$
- $N_h(T)$:
 - for static networks, see Wang et. al ICN 2015
 - difficult to model realistically for mobile networks

Our approach: find $N_h(T)$ from real traces and plug into P_s

Search success ratio: simulations


- Infocom06 (98 nodes, conference)
- Cabspotting (around 500 nodes, San Francisco cabs)
- Helsinki City Scenario (synthetic)

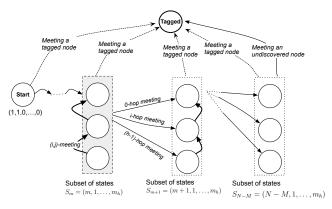
Search success ratio: simulations


- Infocom06 (98 nodes, conference) $\Leftarrow N_h(T)$ and query success
- Cabspotting (around 500 nodes, San Francisco cabs)
- Helsinki City Scenario (synthetic)

Search success ratio: simulations

Key take-away:

- Second hop brings the highest benefits for content discovery
- But still improvements for $h\leqslant 4$
- Minimal improvement → not significant increase in user satisfaction



Continuous Time Markov Chain modeling of the forward path: T_h

- Return path = forward path with $\alpha = \frac{1}{N-1}$
- *T˜_h*: an approximation for *T_h*, meeting rate λ, details in the paper!

$$\tilde{T}_h = \sum_{i=0}^{\infty} \frac{(1 - \alpha/\lambda)^i}{\lambda(1 + i(1 - h^{-1}))}.$$

13/29

Search completion time: CTMC model

α	Time	h = 1	h = 2	h = 3	h = 4	h = 5
	T_h	1	0.21	0.13	0.12	0.11
Low	\tilde{T}_h	1	0.14	0.12	0.11	0.11
	Error	0	-0.32	-0.08	-0.03	-0.03
	T_h	1	0.40	0.33	0.31	0.31
Medium	\tilde{T}_h	1	0.39	0.35	0.33	0.33
	Error	0	-0.01	0.07	0.06	0.05
	T_h	1	0.51	0.46	0.45	0.45
High	\tilde{T}_h	1	0.54	0.49	0.47	0.46
	Error	0	0.05	0.08	0.06	0.04

• Notice the drastic decrease at h=2

Search completion time: CTMC model

α	Time	h = 1	h=2	h = 3	h = 4	h = 5
	T_h	1	0.21	0.13	0.12	0.11
Low	\tilde{T}_h	1	0.14	0.12	0.11	0.11
	Error	0	-0.32	-0.08	-0.03	-0.03
	T_h	1	0.40	0.33	0.31	0.31
Medium	\tilde{T}_h	1	0.39	0.35	0.33	0.33
	Error	0	-0.01	0.07	0.06	0.05
	T_h	1	0.51	0.46	0.45	0.45
High	\tilde{T}_h	1	0.54	0.49	0.47	0.46
	Error	0	0.05	0.08	0.06	0.04

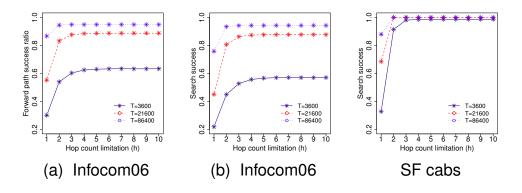
• Second hop brings the highest gain!

Search completion time: CTMC model

α	Time	h = 1	h = 2	h = 3	h = 4	h = 5
	T_h	1	0.21	0.13	0.12	0.11
Low	\tilde{T}_h	1	0.14	0.12	0.11	0.11
	Error	0	-0.32	-0.08	-0.03	-0.03
	T_h	1	0.40	0.33	0.31	0.31
Medium	\tilde{T}_h	1	0.39	0.35	0.33	0.33
	Error	0	-0.01	0.07	0.06	0.05
	T_h	1	0.51	0.46	0.45	0.45
High	\tilde{T}_h	1	0.54	0.49	0.47	0.46
	Error	0	0.05	0.08	0.06	0.04

• \tilde{T}_h provides pretty accurate approximation of T_h

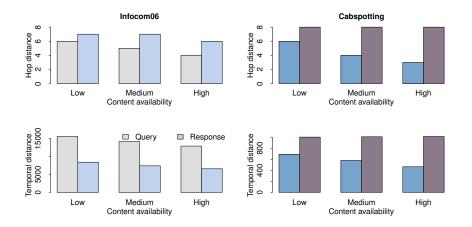
How about in the wild?



• Realism included: simulations using ONE simulator

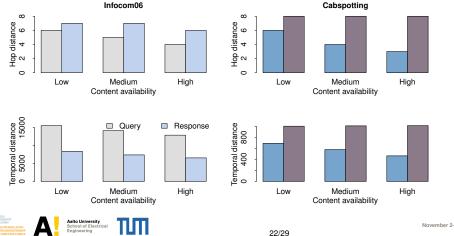
- We want to understand:
 - validity of our conclusions from the model (second hop!)
 - average (temporal and hop) distance to content provider
 - · average (temporal and hop) distance to the searching node
 - forward path vs. return path
 - search cost

Search success: low content availability ($\alpha = 0.05$)


- Second hop!
- High tolerated waiting time: wait till meeting the content provider!
- SF cabs have higher contact opportunities

Aalto University School of Electrical

Where is the content? No hop or time restriction, epidemic search


Where is the content?

Left bars: query, right bars: response

- · Content's location depends on content availability: forward path
- Distance to searching node: independent of content availability

Forward and return paths: are they correlated?

- ρ : Pearson correlation coefficient of forward and return paths
- γ : Difficulty of return path compared to forward path (i.e., ratio)

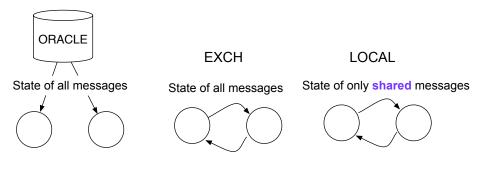
Т	α	ρ_{hop}	ρ_{temp}	γ_{hop}	γ_{temp}	P_h	P_s
	Low	0.30	0.36	1.47	2.23	0.35	0.30
600	Med.	0.29	0.34	1.72	3.09	0.42	0.34
	High	0.27	0.32	1.97	4.02	0.48	0.38
	Low	0.35	0.43	1.4	2.18	0.63	0.57
3600	Med.	0.35	0.38	1.61	2.98	0.67	0.61
	High	0.33	0.32	1.85	4.13	0.70	0.65
	Low	0.33	0.13	1.39	2.60	0.95	0.94
86400	Med.	0.35	0.13	1.62	3.52	0.95	0.94
	High	0.35	0.12	1.86	4.50	0.95	0.95

No strong correlation (effect of restricted tolerated time)

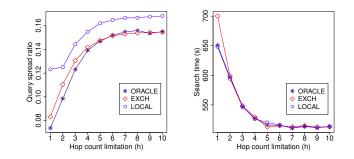
Т	α	$ ho_{hop}$	$ ho_{temp}$	γ_{hop}	γ_{temp}	P_h	P_s
	Low	0.30	0.36	1.47	2.23	0.35	0.30
600	Med.	0.29	0.34	1.72	3.09	0.42	0.34
	High	0.27	0.32	1.97	4.02	0.48	0.38
	Low	0.35	0.43	1.4	2.18	0.63	0.57
3600	Med.	0.35	0.38	1.61	2.98	0.67	0.61
	High	0.33	0.32	1.85	4.13	0.70	0.65
	Low	0.33	0.13	1.39	2.60	0.95	0.94
86400	Med.	0.35	0.13	1.62	3.52	0.95	0.94
	High	0.35	0.12	1.86	4.50	0.95	0.95

Return path is more challenging

Т	α	ρ_{hop}	$ ho_{temp}$	γ_{hop}	γ_{temp}	P_h	P_s
600	Low	0.30	0.36	1.47	2.23	0.35	0.30
	Med.	0.29	0.34	1.72	3.09	0.42	0.34
	High	0.27	0.32	1.97	4.02	0.48	0.38
	Low	0.35	0.43	1.4	2.18	0.63	0.57
3600	Med.	0.35	0.38	1.61	2.98	0.67	0.61
	High	0.33	0.32	1.85	4.13	0.70	0.65
	Low	0.33	0.13	1.39	2.60	0.95	0.94
86400	Med.	0.35	0.13	1.62	3.52	0.95	0.94
	High	0.35	0.12	1.86	4.50	0.95	0.95



- Ideally, once content is discovered or response is received, message spreading should be stopped
- · Difficult in a distributed setting



- Ideally, once content is discovered or response is received, message spreading should be stopped
- Difficult in a distributed setting

Search cost with increasing hop count

- Even local knowledge is sufficient, thanks to the small network diameter!
- Two-hops improves a lot, but further hops help decreasing search completion time.

Take aways from our paper

- Hop-limited search:
 - content availability and mobility
 - tolerated waiting time
- Second hop brings the highest benefits but further hops still improve search performance
- Small world networks, i.e., no benefit after 4-5 hops
- Return path is more challenging

Thanks!

http://www.netlab.tkk.fi/tutkimus/pdp/

supported by Finnish Academy of Science

- Optimal hop count: MsWiM 2014
 Esa Hyytiä, Suzan Bayhan, Jörg Ott, Jussi Kangasharju
- Availability estimation: ComCom 2015
 Esa Hyytiä, Suzan Bayhan, Jörg Ott, Jussi Kangasharju

