
On Search and Content Availability in Opportunistic Networks
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Abstract

Searching content in mobile opportunistic networks is a difficult problem due to the dynamically changing topology and
intermittent connections. Moreover, due to the lack of global view of the network, it is arduous to determine whether
the best response is discovered or search should be spread to other nodes. A node that has received a search query has
to take two decisions: (i) whether to continue the search further or stop it at the current node (current search depth)
and, independently of that, (ii) whether to send a response back or not. As each transmission and extra hop costs in
terms of energy, bandwidth and time, a balance between the expected value of the response and the costs incurred
must be sought. In order to better understand this inherent trade-off, we consider a model where both the query and
response follow the same or similar path. We formulate the problem of optimal search for two cases: a node holds
(i) exactly matching content with some probability, and (ii) some content partially matching the query. We design
static search in which the search depth is set at query initiation, dynamic search in which search depth is determined
locally during query forwarding, and learning dynamic search which leverages the observations to estimate suitability
of content for the query. Additionally, we show how unreliable response paths affect the optimal search depth and
the corresponding search performance. Moreover, we study different methods to a priori learn the availability of the
content in the network based on passive observations (e.g., using regression and maximum-likelihood based estimates).
Such information is highly valuable when defining the optimal search parameters. Finally, we investigate the principal
factors affecting the optimal search strategy.

Keywords: Mobile opportunistic networks, mobile search, mobile cloud computing, dynamic programming,
availability estimation

1. Introduction

Mobile users rely on cloud-based third party services for information sharing and messaging even if they are close by
so that their respective devices could exchange information directly, without taking a long distance detour across the
Internet and potentially half-way around the world. This holds for a broad spectrum of services from email and chat
(e.g., Jabber) to online social networks (e.g., Facebook, Twitter) to data and file sharing (e.g., Dropbox). Important
features of such services include that they are well-known and well-managed (including backups), support a global
community, and are usually instantly accessible, so that users have them always conveniently at their disposal—as
long as they are connected to the Internet.

However, this convenience creates dependencies, at the very least on Internet access and the availability and
reachability of the respective third-party service. It also creates cost: the data needs to be moved (repeatedly) through
parts of the Internet, consuming network and energy resources, and needs to be processed and stored in the cloud—
including backups, as even short-lived data is rarely deleted (immediately or at all) after sharing, as the authors observe
in their and others use of, e.g., Dropbox.

Instead of using infrastructure services, nodes can directly exchange content via short-range communication inter-
faces, e.g., Wi-Fi, Bluetooth, such that only the peers in wireless contact are involved. In this manner, peers can build
a network operating in an ad hoc mode and facilitating the communication between non-adjacent nodes via hop-by-hop
data forwarding. With the sheer growth of data traffic and fierce competition for the bandwidth, operators benefit
from this approach for decreasing the path between the content provider and the consumer. On the other hand, due
to the instability of the direct links, this scheme may not guarantee certain delay bounds, limiting its applicability to
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Figure 1: Search query travels from a node to another and the path forms a linear trajectory in space. The response is assumed to follow
the same (or similar) path backwards.

only delay-tolerant applications. Delay-tolerant networking (DTN) [8, 9] defines such a networking paradigm facilitat-
ing communication without an infrastructure support for a variety of application scenarios including inter-planetary,
vehicular, underwater, and opportunistic networks.

Mobile opportunistic networks, also dubbed Pocket switched networks [19][11], are of particular interest with the
increasing diffusion of powerful mobile wireless devices (such as tablets and smartphones). Mobile devices carried by
humans can exchange information when they come in transmission range of each other and physically carry the content
on their way. Certainly, this operation mode is vital for cases where the network infrastructure fails (e.g. after natural
disasters), does not exist, or access to infrastructure services or even the Internet at large is blocked [7].

The wealth of data produced or downloaded by the mobile devices requires efficient search algorithms that can
locate the relevant content quickly and cost-effectively rather than näı¿ 1

2ve enquiry of each node upon a contact.
Searching content in mobile opportunistic networks is a difficult problem due to the dynamically changing topology
and intermittent connections. A question arising in this context is what are the fundamental determinants of search
in mobile opportunistic networks. In this work, we aim to provide insights on this question by designing static and
dynamic search schemes. We focus on a single query that visits a node after another along some (natural) path as
illustrated in Fig. 1 (i.e., the query is not replicated). The response follows the same (or similar) path backwards.
That is, the response path is assumed to equally long, and moreover, it can be unreliable, e.g., due to mobility during
the search. More specifically, we assume that searches terminate relatively quickly (say, order of ten seconds) and a
link backwards exists if the response can be transmitted shortly (but not necessarily immediately). In other words, we
do not require persistent end-to-end paths.

In practice, the search path can form naturally based on some path selection criteria such as a similarity metric
for nodes, which reflects positively to the probability of finding relevant information in the node. Similarly, the actual
search can consist of multiple (independent) linear paths.

The main contributions of this paper are as follows:

1. We provide theoretical modelling of several search strategies: static, dynamic, and learning dynamic search. In
static search, the search is extended to a predefined number of nodes n whereas in dynamic strategies a node
may stop the search before depth n depending on what has been found so far (and whether some response has
already been sent back). Both of these assume that each node knows the distribution of information in the nodes
(value of response to given search). Our final search strategy, referred to as the learning strategy, is more robust
and estimates the value distribution dynamically as the search progresses from a node to another.

2. To assist the search, we also study different methods to a priori estimate the content availability based on
other similar queries nodes have observed in the past. As these methods rely on passive observations, the only
additional cost is a negligible increase in the computational effort, while the benefits can be considerable when
each query has a good understanding of the operating environment from the beginning. To the best of our
knowledge, our paper is the first paper on content availability estimation in an opportunistic network.

3. For both the static and dynamic search, we model the search process under both exact matching and partial
matching content items. The former corresponds to search of the specific content (yes or no), whereas in the
latter a multitude of answers is possible each with a different value.

4. Although we assume that response follows the same or equally long path as the query, we model the unreliability
of the link between two nodes on the response path and analyze how it affects the optimal search (cf. mobility).

Rest of this paper is organized as follows. First, in Section 2 we briefly review the related work. Then, Section 3
introduces our model and notation. Section 4 presents the analysis of different search strategies, whereas Section 5
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discusses four methods to a priori estimate the average content availability in the opportunistic network. These are
followed by a performance evaluation in Section 6. Section 7 concludes the paper.

2. Related work

In a broad context, we can consider every forwarding algorithm in a DTN as a search scheme for a specific target
node. We exclude broadcast algorithms as they aim to reach each and every node. In content search, first the sought
content is mapped to some node(s) that have a high likelihood of holding this particular content. Next, nodes upon
encounters forward the query with the aim of reaching the specified destination(s) that matches the mapping between
content and the node profile. For example, seeker-assisted search (SAS) [3] vaguely maps a content to the nodes of a
particular community which is a group of nodes sharing common interests. Hui et al. [11], design Haggle – a content
sharing scheme, by leveraging the node’s self-declared interests to locate the contents that might fall in the interest of
the node. In Haggle, each content and node have some attributes that are manually defined. These attributes provide
the basis of mapping between a content and its target nodes. See also the Bubble forwarding algorithm [12], which
tries to exploit the social structures when making the forwarding decisions.

Rational search schemes should direct the search towards the nodes that have a higher likelihood of having the
sought item. On the way to these “potential content providers”, nodes with good relaying capabilities can be employed
as intermediate carriers. The forwarding decision can exploit various characteristics of the network, e.g., centrality
of the nodes, (sub-)groups in the network, content and node relevance. For example, SAS [3] exploits the homophily
principle, tendency to associate and interact with similar others, and directs the search towards the nodes of the
same community as the content might have been sought and be readily available at a node in this community. In
order to avoid searching only a specific part of the network, SAS expands the search also to elsewhere, although the
probability of finding the content might be lower. Likewise, DelQue [10] defines geo-community concept to associate
the interests with the locations (e.g., people interested in basketball contact each other in gyms). In Haggle, nodes
exchange contents at each encounter so that contents are constantly pushed towards the nodes with some interests for
this content rather than an explicit search. In this paper, similar to SAS, we consider a pull-based search scheme in
which nodes issue queries for finding specific contents.

Deciding when to stop the forwarding of the search query is another challenge as nodes operate in distributed
fashion relying on their local knowledge. Although a query might have reached the content provider and a response
message may be already on the way, this may not be signalled immediately to other parts of the network. Hence, each
node should decide on forwarding or terminating the spread. An early termination may result in search getting no
responses, whereas late termination leads to over-consumption of the resources, e.g., battery. Pitkänen et al. [18] define
a termination logic in which each node using the observed degree of itself estimates the number of nodes the query
might have reached by now and the number of possible responses generated by these nodes. The query is terminated if
the estimate is above some threshold. [23] leverages the self-declared expertise of a node for each query category (e.g.,
history or arts) to decide whether this node’s response is sufficiently precise for the received query. If node’s expertise
– defined as the probability of correctly answering a query – is above a threshold, the node prepares a response and
the query is deleted with some probability. The probability depends on node’s expertise and lets some redundancy to
account for the inaccuracy in self-declared expertise. Under transmission bandwidth and storage capacity constraints,
RAPID [1] replicates the messages to the node’s contact in decreasing order of message utilities such as expected
delivery delay and deadline violation level. In this manner, messages yielding higher cost compared to their utilities
are terminated based on the benefit and cost evaluation at each node. Setting time-to-live (TTL) for a query is
another way of limiting the spread as a message is dropped after the expiry of its TTL. However, determining the
optimal TTL is not straightforward as it depends on various network dynamics including the traffic load and content
availability. Our solution is similar to [1] in the sense that each node evaluates the expected utility of the next hop and
the increased cost due to involving it. This decision can be intricate depending on the degree of information available
to the decision maker. [23] calculates the “k-hop reached expertise” to calculate the utility of each node for multi-hop
search and experimentally assesses the performance of k-hop search for k 6 3. DelQue in [10] limits the search to two
hops based on the observation that nodes with their one-hop neighbors can cover a significant portion of the network.
As for search termination, different than the listed approaches, we find the optimal depth - the hop distance from the
searching node - to stop the search under various settings.

Search, although having similarities with opportunistic forwarding, is more complicated due to its bidirectional
nature, i.e., the discovered content or other responses have to be forwarded back to the searching node. What is
more, treating search as a twofold process, e.g. query forwarding and response forwarding, may lead to a sub-optimal
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Figure 2: Linear network, where search query travels to the right and a possible response(s) to the left.

performance or even hinder the search success. For instance, search message eventually discovering some related
content, might already be too far from the searching node that the response is obsolete or too difficult to route back.
Therefore, the response path should also be taken into account explicitly. SAS considers a direct-delivery scheme for
the response path whereas DelQue limits the number of relays to one and the relay is selected based on its capability
to both deliver the query and also the response back to the searching node. In [23], basic focus is on the query path
and they borrow one of the one-to-one routing schemes in the literature to implement the return path. Designing a
short response path eases the search process to some extent but may also be limiting the search. Hence, we do not
expose any limitations on the path length. The only assumption in our paper is that response follows the same path
as the query. In our basic model, we assume that this path exists for the duration of the search, but numerically we
also investigate what happens if the path back to the searching node becomes unreliable.

3. Model and Notation

As already mentioned, searching content in an opportunistic wireless network is not trivial. Therefore, we resort
to analyze a simplified setting to understand how much an optimal search scheme can save. In particular, we consider
a search in a linear network, where the basic action at each node is to decide if the search should continue further, or
if we are satisfied with the content found so far. More specifically, our model and basic terms we use throughout the
paper are defined as follows.

• We assume a linear network, where the source node is located at the origin and there are an infinite number of
nodes along the positive x-axis, see Fig. 2. Please note that this linear model is a logical abstraction rather than
a physical interpretation (cf. Fig. 1), however under our assumption of no replication for query messages, every
query will follow such a linear path.

• Forward path: A query travels on the forward path, where the loss probability is assumed to be zero. In other
words, a node meets another node within a reasonable time with a high probability.

• Return path: A possible response travels in the opposite direction on the return path and the response can be
delivered to the previous node in the chain with a fixed probability of γ (during the search). In the ideal case,
γ = 1. However, in practice there are many reasons for γ < 1. For example, a node may have carried the search
query away, or a previous hop may have gotten out of transmission range.

• Value of a node (Vi): For each query, each node i has a response whose value is described by i.i.d. random
variables denoted by Vi. Note that Vi = 0 corresponds to “nothing useful”. This value can be interpreted as the
ranking or relevance of the response similar to ranked search results returned by a search engine.

• Let the total number of transmissions be m when the search has completed, and d be the highest valued response
that is returned back to the source. Independent of the status of transmission, i.e., a failed transmission attempt
or successful one, every transmission attempt on the return path is included in m.

• Each transmission costs e (say energy and time), which is assumed to be the same for both the query and response
for simplicity. In practice, queries are expected to be smaller message units than the responses as they are simple
text messages. Responses might have a higher cost if they return a lot of data (e.g., music, photos, or video).

• Critical transmission cost is the smallest transmission cost for which the optimal search depth is n.

• If a search is terminated after n hops and nothing useful has been found, there is no need to send a response
back to the source resulting in n = m, and the transmission costs are ne.
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• As the search success criterion, we consider the net profit of a search, i.e., the utility. We calculate the utility of
a search as the value of the response minus the expenses,

U := d−m · e. (1)

In other words, the aim is to maximize the net profit for each search individually, and thereby maximize also the
global profit rate in the network (cf. social optimality).

• We define the following four actions for a node i along the search path:

1. Stop the search

2. Stop the search and send a response back to the source

3. Continue the search to Node i+ 1

4. Continue the search to Node i+ 1 and also send a response back to the source.

• The optimal search algorithm α chooses dynamically the action that maximizes the utility given by (1).

We note that our problem is related to the optimal stopping problem in the routing at DTNs, see, e.g., [16] and [24].
However, there is a fundamental difference because in our setting there are multiple ways to “stop”: one can simply
stop and give up, or stop and send a response back to the searching node (which costs more in terms of energy and
time). Moreover, it is possible to send a response while still proceeding further with the search. The search forwarding
algorithm must take all these different options and the earlier observations into account when making the decisions.

4. Optimal search strategies

In this section, we will analyze the optimal search strategies. First, we consider static strategies, where the searching
node sets at the time of search admission how many hops the query should go further. In other words, the actions of
other nodes are already decided by the searching node, i.e., search and forward the query till the hop limit is reached.
Next, we introduce dynamic strategies, where the action of each node may depend on what has been found so far, and
if some responses have already been sent. The dynamic strategies may also learn the value distribution during the
search. In the following, we model these search schemes for two settings. First, we consider a setting in which a node
may have the sought item or not. We call this as exact-match scenario. Next, we model the content items that may
partially match the search query, i.e., the content may not be the perfect answer for the search query but provides
some relevant information. We call this case as partially-match scenario.

4.1. Exact-Matching Contents: Bernoulli distribution

Let us start with the binary case where a node either has the complete response to the query, or no relevant
information at all. That is, the value of the response from node i obeys Bernoulli distribution Vi ∼ Bernoulli(p), where
p denotes the probability that a node has the sought content. We refer to p as the content availability, and q denotes
the probability of the opposite case, q = 1 − p. To account for the effect of mobility on the stability of the links, we
let the links on the return path be unreliable (γ < 1). In our model, at most one response is sent per query.

4.1.1. Static strategy

Let us assume that nodes are aware of the content availability p. A static search strategy is defined by a fixed depth
n, i.e., each search will check the first n nodes and then return the highest response found. Given that each link is up
and ready for transmission with probability γ independent of other links, we calculate the number of transmissions on
the return path as:

rn =

n∑
i=1

iγi−1(1− γ) + nγn. (2)

Based on γ, we define rn as:

rn =


1− γn
1− γ , when 0 < γ < 1,

n, when γ = 1.
(3)
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Figure 3: Optimal max. search depth n∗ in Bernoulli case (vmax = 1) with (a) the static strategy, (b) dynamic strategy and (c) learning
strategy (which does not know p a priori). The top row corresponds to the ideal case with γ = 1, whereas on the bottom row the return
path is unreliable and γ = 0.7.

The total number of transmissions is m = n+ rn, and the response reaches the searching node with probability of γn.
The expected search result with depth n is

Rn = E[max{V1, .., Vn}] · γn
= (0 · qn + 1 · (1− qn)) γn

= (1− qn)γn. (4)

Thus, the expected utility under n hop search is

Un = Rn − (n+ rn)e = (1− qn)γn − (n+ rn)e. (5)

For γ = 1, the response travels the same path as the query and hence rn = n. This case also provides the upper bound
of the search success for this strategy:

Un = 1− qn − 2ne. (6)

The optimal static policy is obtained by finding n that maximizes the expected utility:

n∗ = arg max
n∈N

Un. (7)

We note that this is clearly a non-optimal strategy: if Node 1 already has the sought content it is useless to search
any further. Nonetheless, we consider this simple strategy first and later compare how far it is from the optimal.
Below, we provide the optimal hop count for both the perfectly reliable response links (i.e.,γ = 1) and lossy response
links (i.e.,γ < 1).

• Case γ = 1: Let us first assume the ideal case with γ = 1. Note that if p < 2e, then the optimal search depth
n is zero, i.e., it is not worth initiating a search at all. The optimal (integer-valued) search depth n is found by
studying the gain from expanding the search by one step, i.e, ∆U(n) = Un+1 − Un:

∆U(n) =
(
1− qn+1 − 2(n+ 1)e

)
− (1− qn − 2ne) = pqn − 2e.
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The gain becomes negative at the optimal search depth, giving

n∗ =

⌈
log(2e/p)

log q

⌉
. (p > 2e) (8)

• Case 0 < γ < 1: Let us next consider unreliable return paths. The condition remains the same, i.e., at the
optimal depth n we have Un+1 − Un ≤ 0. Unfortunately, in this case we cannot express n∗ in closed form.
However, we can determine the critical transmission cost e∗n,

e∗n =
γn(qn + γ − γqn+1 − 1)

1 + γn

which is the smallest transmission cost for which the optimal search depth is n∗ = n. Conversely,

n∗ = arg min
n

{n | e∗n < e} .

The optimal search depth n∗ for γ = 1 is illustrated in Fig. 3(a.i). In the upper left “triangle”, where p < 2e, we
have n∗ = 0, i.e., the value of the sought information is too low to justify a search. Note also that when p → 1, i.e.,
when the content becomes highly available, the optimal search depth is n∗ = 1 for any fixed transmission cost e < p/2.
This is due to the fact that the content is always found at the first node, and still continuing the search further would
just waste energy and time. Indeed, this inability to dynamically stop the search is the Achilles heel of all static search
strategies.

Fig. 3(a.ii) depicts the optimal static search depth when the return path is unreliable and each link backward exists
with the probability of γ = 0.7.

4.1.2. Dynamic strategy

Let us next consider strategies that adjust the search depth dynamically as the search progresses. In the Bernoulli
case, the obvious dynamic search strategy searches at most n nodes (the max. depth) and terminates immediately if
the content is found. Hence, e.g., with the probability of p, the first node has the content and the total number of
transmissions is 2 (out of which, the latter is successful with probability of γ). Note that the expected value of the
content found (but not necessarily successfully returned) is the same as with the static strategy, E[maxi Vi] = 1− qn.
However, the search may terminate earlier, which (i) saves in the number of transmissions and also (ii) improves the
probability of successfully returning a response.

Response value depends on both the value distribution and the successful delivery of this best response. The former
is the same as the ideal case whereas the latter depends on γ as well as on which hop the content provider is discovered.
Therefore, we need to condition on the hop distance of the node that provides the content. Dynamic strategy enables
immediate termination of the query upon discovery of the content. Therefore, if the ith hop is the content provider,
it implies that all previously visited (i − 1) nodes do not have the content. In other words, the probability that the
content is found at the ith hop is qi−1p, and thus the mean value of the response is

Rn =

n∑
i=1

qi−1p · γi =
(1− q)(1− (qγ)n)γ

1− qγ . (0 < γ ≤ 1)

For the cost, we need to determine the mean number of hops. To this end, we condition also on the number of
transmissions on the return path (out of which the last one may have failed). Let i denote the number of hops the
query travels, i.e., the length of the forward path, and j the number of transmissions on the return path. Then the
mean number of transmissions is given by

Nn =

n∑
i=1

qi−1p ·

i+

i∑
j=1

jγj−1(1− γ) + iγi

+ nqn, (0 < γ ≤ 1)

where the last term corresponds to a search that did not find the content. The mean utility is UnRn − eNn. Subse-
quently, for the difference ∆U(n) = Un+1 − Un we obtain

∆U(n) =

(
pγ1+n −

(
1 +

p
(
1− γn+1

)
1− γ

)
e

)
qn.
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Figure 4: The optimal dynamic search depth with fixed e = 0.1 and p = 0.5 as a function of 1 − γ.

Determining the root of ∆U(n) gives the optimal search depth.

• Case γ = 1: In this case, we obtain explicitly

n∗ =

⌈
1

e
− 1

p

⌉
− 1, (9)

whereas the corresponding critical transmission cost is

e∗n =
p

(n+ 1)p+ 1
.

• Case 0 < γ < 1: Similarly, for 0 < γ < 1, the optimal search depth is

n∗ =

⌈
log

(
e(1− γ + p)

p(1− γ + e)

)
/ log γ

⌉
− 1.

and the corresponding critical transmission cost is

e∗n =
p(1− γ)γ1+n

p (1− γ1+n) + 1− γ ,

which was the minimum transmission cost at which n∗ = n.

The optimal search depth with the dynamic strategy and γ = 1 is illustrated in Fig. 3(b.i). Note that the maximum
search depth (but not the mean) with the dynamic strategy is always greater than or equal to the search depth with
the static strategy. Moreover, the equicontour lines are strictly increasing functions of the availability p due to the
fact that this strategy is able to stop the search dynamically. In passing we note that if we are required to return also
a null answer with the Bernoulli case, then the optimal search depth becomes ∞ if p > 2e, and otherwise it is zero.
Fig. 3(b.ii) illustrates the optimal search depth n∗ as a function of the availability p and transmission cost e for fixed
γ = 0.7. The curves appear as scaled down versions of Fig. 3(b.i).

In Fig. 4, we have fixed e = 0.1 and p = 0.5, and vary 1− γ that corresponds to the loss probability on the links of
the return path. We notice that n∗ decreases to 1 as the loss probability increases, i.e., when the return path becomes
uncertain. As the intuition suggests, under a high mobility, long paths become fragile and should be avoided, and only
the neighboring node(s) should be involved in the search.

4.1.3. Learning dynamic strategies

All earlier strategies, both static and dynamic, make the crucial assumption that the value distribution (defining
the value of information per node for the query) is known a priori. In practice this may not be the case, even though
one can envision that empirical distribution has been obtained from past encounters. In this section, we take the
Bayesian approach and refine our estimate of the value distribution as the search progresses further. For simplicity
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Figure 5: Node i decides on whether to terminate the search or to forward it to the next node depending on its expected outcome and
belief of p̂i+1 – the probability of finding the content in the next node.

of notation, we assume Bernoulli case with unknown content availability p, but note that the approach itself can be
generalized to other value distributions.

A priori we assume that p is uniformly distributed on (0, 1). As the source node does not have an answer, we
consider that initially one node has been checked and found out not to have a valid response. Suppose that in state i
we have checked i nodes and none of them had a valid response. The Bayes formula gives the conditional pdf for p,

f(p | i) =
P{i | p} · f(p)∫ 1

0
P{i | p} · f(p) dp

,

where P{i | p} = qi and1 f(p) = 1, giving

f(p | i) =
qi∫ 1

0
qi dp

= (i+ 1)qi.

Subsequently, the expected value of p = 1− q after i negative observations is

p̂i =
1

i+ 2
.

• Case γ = 1: Let wi denote the expected final outcome from state i with optimal strategy, i.e., we have already
checked i+1 nodes (including oneself) without luck. Then the search strategy bases its action on the assumption
that p̂i is the probability that the ith node has the sought content (i.e., on the condition that none of the previous
nodes had it). There are two possible actions at this point– either terminate the search or spread it further. For
the first case, there is no reward as the search could not find the content. The corresponding outcome is −ie
(see Fig. 5). For the second case, the expected outcome of continuing the search to the (i+ 1)th node is:

p̂i+1(1− 2e(i+ 1)) + (1− p̂i+1)wi+1 =
1

i+ 3
(1− 2e(i+ 1)) +

i+ 2

i+ 3
wi+1,

where the first term denotes the reward of successful discovery of the content; and the second term corresponds
to the case that the content is not found at the (i + 1)th node and search can be spread to the next node or
terminated. Recursively wi is defined as follows:

wi = max

{
−ie, 1

i+ 3
(1− 2e(i+ 1)) +

i+ 2

i+ 3
wi+1

}
. (10)

This otherwise infinite recursion can be constrained by noting that there is no use to continue if the possible gain
is less than what it takes to return an answer back to the source. In case the content is discovered at the (i+1)th
node, the cost of transmitting the response along this path is (i+1)e. The node takes into account the additional

1Note that the approach allows an arbitrary a priori distribution for the availability, which can be in practice based on, e.g., earlier
similar queries.
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cost of transmitting the query to the next node which then results in the total cost (i+ 1)e+ e = (i+ 2)e. For
the node to have some incentive to proceed the search, this cost has to be smaller than the maximum gain, i.e.,

(i+ 2)e ≥ 1 ⇒ i ≥ 1

e
− 2.

That is, for states i ≥ 1/e− 2, we have wi = −ie. The learning search strategy, based on the Bayesian thinking,
thus continues the search as long as the second option in (10) is greater than −ie. In particular, for the maximum
search depth n∗ we have wn∗ > wn∗+1 = −(n+1)e. Consequently, letting ∆U(n) denote the gain from continuing
the search exactly one step further,

∆U(n) :=
1

n+ 3
(1− 2e(n+ 1)) +

n+ 2

n+ 3
(−(n+ 1)e) + ne =

1− 2e(2 + n)

n+ 3
,

we need to find n for which ∆U(n) becomes negative. Therefore,

n∗ =

⌈
1

2e

⌉
− 2. (e < 0.25) (11)

Comparing (11) to (9), we note that both behave according to ∝ e−1. The knowledge of the content availability
p affects the factor of e−1 term and the constant term.

• Case 0 < γ < 1: Let us assume that parameter γ is stationary and has been determined when the search is
triggered (γ depends on mobility, not on the content sought). For brevity, here we simply give the results. The
expected gain in utility from depth n to n+ 1 is

∆U(n) =
γ1+n − 2e(2 + n)

n+ 3
.

In this case, n∗, corresponding to the root of ∆U(n), cannot be expressed in closed form, but one needs to find
n that satisfies (cf. Lambert W function)

γn+2

n+ 2
= 2γe.

However, for the critical transmission cost we have explicitly

e∗n =
γ1+n

2(2 + n)
,

which holds also for γ = 1. We note that as γ decreases, the critical transmission costs decrease by factor of
γn+1 for each n.

The optimal search depth with the learning strategy is illustrated in Fig. 3(c.i) for γ = 1, and in Fig. 3(c.ii) for
γ = 0.7. Note the independence to the content availability p, which this strategy does not know.

4.2. Partially-Matching Contents

Next we assume that some nodes may be able to provide partial answers to a query, i.e., responses that are good
but not complete. For example, recent but not current information about football results could be considered as good
but not complete answer to a query. For simplicity, in this section we assume ideal return paths with γ = 1. As
example cases, we assume that value of the response from a node obeys either uniform or exponential distribution, for
which we derive the optimal static strategies.

4.2.1. Uniform distribution

Suppose first that Vi ∼ U(0, vmax), i.e., nodes may have partial answers to the query measured by the value. Value
vmax corresponds to a complete answer. The CDF of the maximum value among n samples is

P{max
i
Vi < x} = P{V < x}n = (x/vmax)n.

10



Subsequently, the expected value of the response is

E[max
i
Vi] =

n

n+ 1
vmax,

and the utility reduces to

Un =
n

n+ 1
vmax − 2ne. (12)

Similarly as in the previous case, one can determine the optimal static search depth n∗. Let β denote the ratio of the
maximum value of the response to unit transmission cost, β = vmax/e. Then it follows that

n∗ =

⌈√
1 + 2β − 3

2

⌉
. (β > 4).

4.2.2. Exponential distribution

Next we assume that Vi ∼ Exp(λ). In this case, the expected value of the response from an arbitrary node is
E[Vi] = 1/λ, and CDF of the maximum value is

P{max
i
Vi < x} = (1− e−λx)n.

The expected value of the query is

E[max
i
Vi] =

H(n)

λ
,

where H(n) is the nth harmonic number, H(n) = 1/1 + . . .+ 1/n. The expected utility is

Un =
H(n)

λ
− 2ne. (13)

Considering again the difference Un+1 − Un = 1
λ(n+1) − 2e yields the optimal search depth,

n∗ =

⌈
1

2λe

⌉
− 1. (1/λ > 2e) (14)

4.2.3. General case

In the previous section, we considered static strategies when the value of the content had a continuous distribution.
In such a case, a search will never find the complete answer, but has to settle with something that is hopefully
sufficiently high. The static strategy suits well to such scenario. Next we will assume a finite set of values and
determine the optimal dynamic search strategy using dynamic programming. The decisions may depend also on what
has been found so far. Moreover, we allow multiple responses which make sense in this case, where better responses
can be found later.

We let z = (m,n, d, b) denote the state of the search, where
m = number of transmissions so far,
n = distance to the source (in hops),
d = highest valued response sent towards the source (by an earlier node),
b = highest valued response that node n could send, b = max{V1, . . . , Vn}.

At each state, i.e., upon reaching the next node, the possible actions are
a1 → stop the search,
a2 → stop the search and send a response back,
a3 → continue the search further,
a4 → continue the search, but also send a response back.

We can write at state z = (m,n, d, b) the (expected) final utility for each action (see the model), and choose the best
among them,

w(m,n, d, b) = max
i
{u(ai)},

11



where u(aj) denotes the (expected) final utility with action aj ,
u(a1) = d−m · e,
u(a2) = b− (m+ n) · e,
u(a3) = E[w(m+ 1, n+ 1, d,max{b, Vn+1})],
u(a4) = E[w(m+ n+ 1, n+ 1, b,max{b, Vn+1})].

The optimal action in state z is given by arg maxa{u(a)}. Clearly the actions a2 and a4 make no sense when d = b,
i.e., when no better response than already delivered is available. The evaluation of the above equations directly leads
to an infinite recursion as both u(a3) and u(a4) are defined in terms of w(z). However, we can exclude both actions
when n and m become too large by a simple observation. Namely, one should not forward a query if even the maximum
value of the response, denoted by vmax, from the next node is not worth the trouble of forwarding and sending back
the response, i.e., if

vmax − (m+ n+ 2)e ≤ max{u(a1), u(a2)}, for a3, and

vmax − (m+ 2n+ 2)e ≤ max{u(a1), u(a2)}, for a4.

With these, the recursion becomes finite and the optimal actions can be determined. Unfortunately, the number of
states still explodes when e → 0, which narrows the usability of the dynamic programming approach at this limit.
However, at this limit the optimal strategy is trivial: search until the response with the highest value vmax has been
found.

5. Passive Estimation of the Content Availability

While routing the messages, each node can inspect the message’s header to infer the network state. The query
message’s header consists of several fields including the searching node id, query definition (e.g., an explicit content
id, keywords, etc.), and the hop count the message has travelled so far. Similarly, a response message’s header carries
information about the query, as well as the node that has generated the response. Passively inspecting the encapsulated
information, nodes can estimate the content availability to some extent.

Search schemes can obviously benefit from such a priori information. In this section, we discuss different methods
to estimate the availability based on past observations. As all schemes we consider exploiting already available infor-
mation, we call them as passive schemes. We discuss the performance and shortcoming of these passive schemes in
this section, and leave the more advanced active schemes as future work. However, first we need to define what we
mean by availability. There is at least three possibilities:

1. Global availability, denoted by p(G), is defined as the probability that a random node has a content that fulfils
a random search criterion.

2. Type-specific availability, denoted by p(T ), refers to the fraction of nodes that can respond to a random query
of the given type. Here we assume that search queries can be categorized to types, which could refer to songs of
certain genre, sport news, information about traffic delays, etc.

3. Content-specific availability, denoted by pk, refers to the availability of a specific content ck. In this case,
we assume that there are M unique contents in the network.

If a query is about searching a specific content ck, and pk or its estimate is available, then the search strategy should
utilize that information. If the content-specific availability is unknown, but one has an estimate for the availability of
the given type of content, then the search scheme can resort to that. The global availability p(G) would then be the
last resort. In contrast, if a query is about a certain type of content (say a pop song with some keywords), then the
first option is to utilize the content type specific availability, and if that is not possible, then the global availability.

In summary, the availability itself is already a complicated concept and in order to keep the discussion concise, we
implicitly assume a content-specific availability in the rest of this section. At the same time it is good to keep in mind
that most of the estimation methods discussed can be also used to estimate p(G) and p(T ) without any changes.

Since nodes may have different observations depending on their position in the network, we will use indices to refer
to the individual node estimations, e.g., p̂k(ni) for ni’s estimation. Let p = [pk] be the vector of content availabilities,
and p̂ = [p̂k] be the vector of estimated content availabilities. We assess the estimation error as the absolute difference
between p̂ and p, and calculate the estimation error of ni as follows:
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δp(ni) =

∑M
k=1 |p̂k(ni)− pk|

M
. (15)

In an active scheme, nodes can share their estimates, and thereby improve their knowledge about the availabilities.
Considering the whole network of N nodes as a single entity, we can also calculate the collaborative estimates as the
average of the estimates:

p̂k =

∑N
i=1 p̂k(ni)

N
. (16)

Similar to (15), we calculate the average estimation error denoted by δp.
Next we will discuss how each node ni can estimate the global, type-specific or content-specific availability. There-

fore, for clarity, we drop ni and k from the notation. The first two schemes extract the information from response
messages, whereas the other two schemes focus on query messages.

5.1. Extracting availability by counting providers (R-CP)

Let us start with an estimation scheme based on counting the number of content providers observed. To this end,
a node can keep track of the set of unique content providers2 of ck denoted by S. With this information, a node can
calculate the availability of ck as follows:

p̂ =
|S|
N
. (17)

As for the complexity of this approach, a node may store up to N ×M entries, which happens when all nodes hold all
contents and they are all discovered by the given node.

Strictly speaking, this method would be practical only when the network is small and it makes sense to talk about
the number of nodes N . However, generalization for larger and/or dynamic networks is straightforward when one
interprets N as the (estimated) mean size of the “local network” that is relevant to search operations of the given
node. Henceforth, we refer to this approach as R-CP as it relies on the information provided by responses (R), more
particularly content provider (CP) id encapsulated in the responses.

5.2. Extracting availability from hop counts (R-HC)

As we showed in Section 4.1.3, a node (or “query”) can estimate p after i nodes have sought in their local storage
to no avail by inspecting the number of hops a query has travelled. The first node receiving the query estimates the
content availability as 1/(1 + 2) = 0.33; the second as 1/(2 + 2) = 0.25; and so on. Consequently, this method may
(initially) lead to optimistic estimation of p̂, i.e., p̂ > p.

Additionally, considering more general network topologies, the nodes can receive multiple queries for the same
content from diverse paths. Queries following different paths result in different estimations about the availability. Nodes
can exploit the diversity in the message hop counts to have more reliable estimates without any extra transmissions.

Compared to information a query carries, a response message may be more informative: it carries information
about the content provider as well as the content availability observed by the content provider. In a response-hop
count based estimation, the content provider adds a field to the response message that shows the number of hops the
query travelled till reaching this content provider. Each node on the response path records the number of response
messages it has relayed with a specific hop count. Let Rh denote the number of response messages a node has observed
(of the given content) that were generated by a content provider who was h hops away from the searching node. Let
us denote the observations of the node by vector R = [Rh]. Using this vector, the node calculates its estimate for the
availability as follows:

p̂ =

∑H
h=1Rh/h∑H
h=1Rh

, (18)

where H is the maximum number of the hop counts the node observes from the response messages. The space
complexity of this approach is H ×M (per node), where M is the number of contents (or content types). We refer to
this approach as R-HC as it relies on the response messages, more particularly hop counts of the queries associated
with the response message.

2Unlike other estimation schemes, this scheme does not lend itself to global or type-specific availability.
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5.3. Regression based estimation of availability (Q-LS)

In this section, we derive a rather sophisticated method to estimate the availability from query messages. Suppose
that a node has recorded all (matching) queries that have passed through it. Unlike in earlier schemes, here we neglect
the responses as their frequency depends highly on the availability and also on the γ parameter. Moreover, in practice
the return path may not be the same as the forward path, and therefore a node may see only a fraction of responses
for the queries that it has forwarded.

What a node then can deduce from the number of queries it has observed? We recall that it does not see a query
(i) if it does not belong to the presumed route of the query, or (ii) if any node earlier along the route had the sought
content and sent a response back. Consequently, it is less likely for a query to reach a given node further it comes
from. Our approach utilizes this property in a novel way to estimate the content availability.

In particular, here we assume that the information available is a sample vector n = (n1, . . . , nH) from a random
vector (N1, . . . , NH), where ni and Ni denote the number of queries observed that have travelled i hops before reaching
a given node. We note that, intuitively, if the availability is high, then nH should be small when compared to n1, i.e.,
{ni} is likely to be a decreasing sequence if integer numbers. Specifically, E[Ni] > E[Ni+1]. The key idea is to utilize
the differences in the ni to estimate the availability.

To this end, we need to make some further assumptions. First, we let random number Mi denote the total number
of queries that would have reached a given node after i hops if a matching content did not exist in their paths. We
assume that each of the Mi queries reaches the given node, independently of the other queries, with the probability of
(1− p)i−1, where p is the availability of the given content type. Hence,

E[Ni] = (1− p)i−1E[Mi],

and therefore we have an obvious estimator for E[Mi],

m̂i =
ni

(1− p)i−1 .

However, we do not know p and actually want to estimate it based on our observations. To this end, we next assume
an uniform source distribution,3 i.e.,

Mi ∼M, (19)

so that we can write
log(E[Ni])︸ ︷︷ ︸

=yi

= (i− 1) log(1− p)︸ ︷︷ ︸
=b(i−1)

+ log(E[M ])︸ ︷︷ ︸
=c

,

which gives us a linear model, yi ≈ b(i− 1) + c. Proceeding with the method of least-squares-fit, we write

e =

H∑
i=1

(yi − b(i− 1)− c)2,

where yi = log ni (assuming ni > 0). Taking the partial derivatives with respect to parameters b and c yields a system
of linear equations, 

∂e

∂b
= 0,

∂e

∂c
= 0.

This system can be solved in straightforward fashion, which gives, after some manipulation, an explicit expression for
parameter b = log(1− p),

b =
6
∑H
i=1(2i−H − 1)yi
H(H2 − 1)

.

3This assumption can be relaxed and adjusted if there is some a priori information about the topology and the distribution of the Mi.
In Section 6.1, we provide some discussion on the distribution of Mi for real world networks.
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Figure 6: Regression based approach builds on the vanishing number of queries from n hops away (a), and its quality improves significantly
as the number of observed queries increases (b).

Our estimate, based on the past observations n, for the availability p is then

p̂ = 1− eb = 1−
H∏
i=1

n

(
6(2i−H−1)

H(H2−1)

)
i . (20)

We note that in above we have not imposed any constraints on the value of b, and therefore p̂ can give infeasible
values (less than zero, or greater than one). In such cases, the size of the sample set is either too small, or some of
our assumptions, such as (19), simply does not hold. We will return this question later in Section 6. We refer to this
approach as Q-LS as it relies on the query messages and uses least-squares regression for estimation.

Figure 6(a) illustrates the regression based estimation method. We have obtained a sample vector n of queries
1, . . . , 6 hops away from a given node. The node fits the model parameters to the data using (20) and obtains an
estimate for the availability p̂ = 0.206, when the correct value would have been p = 0.2. For this example, we assumed
that the Mi ∼ Poisson(m) with m = 50.

Figure 6(b) illustrates the variability in the estimate for m ∈ {10, 50, 500}. The x-axis corresponds to the value
of the estimate p̂ and the y-axis is the probability density. We can see that the quality of the estimate is already
reasonable when m = 50, but as more samples become available (m = 500), the error margin becomes negligible (for
our purposes).

5.4. Maximum-likelihood estimate for availability (Q-ML)

Let us next consider the maximum-likelihood estimate for the availability in the same setting, i.e., we again focus
on a certain content type and the aim is to find the probability that a random node has a content matching a query
of the given type (say, sport results). To this end, we assume similarly as in the previous section that

1. The number of queries originating from i hops away obeys a Poisson distribution, Mi ∼ Poisson(a), where a is
an unknown parameter related to the rate of queries. (to be exact, a = λt, where λ is the rate and t corresponds
to the time-interval).

2. The number of observed queries corresponds to a thinned Poisson process, Ni ∼ Poisson((1− p)i−1a).

3. The number of queries originating from different distances are independent, i.e., Mi and Mj are independent for
i 6= j.

In other words, we assume that the mobile users have a common query rate λ, but they behave independently, which
is a fair and common assumption (cf. telephone calls, web-sessions, etc.). With these, the likelihood function is

L =

H∏
i=1

(
a(1− p)i−1

)ni

ni!
e−a(1−p)

i−1

,

and, as usual, we can consider its logarithm,

logL =

H∑
i=1

ni log(a(1− p)i−1)− a(1− p)i−1,
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Figure 7: MLE based estimate (solid lines) yields a marginally better results than the regression based estimate (dashed lines).

where we have omitted the constant terms − log(ni!). We have two unknown parameters, the mean number of queries
per distance a, and the availability probability p, and we need to determine such (a, p) that maximizes the likelihood
function. First,

∂ logL

∂a
=

H∑
i=1

ni
a
− (1− p)i−1 =

1

a

H∑
i=1

ni −
H∑
i=1

(1− p)i−1,

and setting ∂ logL/∂a = 0 gives

a =

∑H
i=1 ni∑H

i=1(1− p)i−1
. (21)

Then taking the partial derivative with respect to p gives

∂ logL

∂p
=

H∑
i=1

ni
a(i− 1)(1− p)i−2(−1)

a(1− p)i−1 − a(i− 1)(1− p)i−2(−1),

and further,

∂ logL

∂p
=

H∑
i=1

−ni
i− 1

(1− p) + a(i− 1)(1− p)i−2.

Setting also ∂ logL/∂p = 0, and multiplying with (1− p), we have

a =

∑H
i=1 ni(i− 1)∑H

i=1(i− 1)(1− p)i−1
. (22)

Therefore, we are left to find such p that∑H
i=1(1− p)i−1∑H

i=1 ni
=

∑H
i=1(i− 1)(1− p)i−1∑H

i=1 ni(i− 1)
,

from which a straightforward algebraic manipulation gives

H−1∑
i=0

(c− i)qi = 0, where c =

∑H
i=1 ni(i− 1)∑H

i=1 ni
and q = 1− p. (23)

Eq. (23) is a polynomial function of the (H − 1)th degree. Hence, closed-form solutions are readily available for
H ≤ 5, whereas for polynomials of degree 5 or greater (i.e., when H ≥ 6) a numerical solution is needed. Solving (23)
gives an MLE estimate for p, which again when substituted into (21) or (22) gives a, i.e., the estimated number of
queries originating from each distance. We refer to this approach as Q-ML as it relies on the query messages and uses
maximum likelihood function for estimation.

Figure 7 illustrates the performance of the MLE based estimate (solid lines) in the same settings as before. The
regression based estimate is also shown for comparison (dashed lines). We can see that MLE yields a marginally
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better results (the peaks are higher and the right tail is lower), as one could expect. It is also more robust when the
number of observed queries is small, as with about 0.2% probability the regression based approach failed to compute
a meaningful estimate in the case E[M ] = 10. Moreover, the regression based approach seems to have a negligible bias
and overestimates p slightly when E[M ] is small. However, despite of these minor deficiencies, the regression based
estimate is simpler to compute, and therefore we think that it is in overall a better option for actual implementations.

5.5. On availability estimation

Finally, we note that these methodologies are all local and do not require any additional communication between
the nodes. They establish accurate estimates for the average content availability.4 However, it is possible that nodes
occasionally exchange their availability estimates, which increases communication costs only minimally. This can be
extremely useful in the dynamic scenarios where nodes appear to the region and they can immediately get a good
understanding of their surroundings. Another viable option is that nodes along the forward search path incorporate
the availability information to the search process. That is, even if a totally new node initiates a search, already the
first node along the search path can adjust the search parameters and include its availability information. In fact, the
availability estimates can easily piggyback in the query and response messages without any additional communication
costs. This is a topic for further research.

6. Performance evaluation

We now evaluate the performance of the availability estimation methods and the developed search strategies with
several numerical examples. We start with the availability estimation and consider also search strategies where a node
either has the complete information (e.g. a particular file) or nothing.

6.1. Availability estimation on Scale-free topologies

We consider a scale-free network of 80 nodes. Scale-free network [2] structure is prominent in real world networks,
e.g., Internet, World Wide Web, human social networks. We simulate search on this network where all nodes generate
queries for the contents in the network. We consider a uniform content popularity, i.e., all contents are equally likely to
be sought. The content popularity in real networks is more asymmetrical, i.e., a few content items attract a significant
fraction of the requests whereas there are only a number of requests for many content items. However, we consider
a uniform popularity to avoid the highly popular contents being the dominant factor in the overall performance. Re-
garding availability distribution, we consider a skewed availability distribution. More particularly, content availability
of an item is derived from a Zipf distribution with parameter 0.6, which reflects the Zipf parameter of some real world
networks, e.g., Web proxy traffic [14]. While it is shown that content popularity follows Zipf distribution, there is not
such wide agreement on content availability distribution. However, it would be realistic to expect that availability
reflects the content popularity, i.e., if nodes —requesters and/or forwarders— cache response contents opportunisti-
cally [17], availability would grow with popularity. However, as discussed in [21] content availability may not always
follow the same distribution as the content popularity. Nevertheless, such a skewed distribution serves to our purpose
which is to see if difference in content availabilities can be captured by the estimation schemes.

Queries are routed using a flooding algorithm whereas the responses are routed back only on the shortest path
from the content provider to the searching node. We report results as the average of five runs of each scenario. Since
Q-ML is only marginally better compared to Q-LS but comes with a higher complexity, we omit it in this section.

In Section 5.3, we assumed uniform distribution for Mi. However, this assumption may not hold for real networks
where nodes may have different number of nodes at a distance of i hops. We call the total number of nodes that are
exactly i-hops away from a node as the i-hop neighborhood size and denote it by NNi. Assuming that all nodes have
similar interests and same query generation rates, we expect Mi to be proportional to NNi. Hence, in our estimation
using Q-LS, we assume that each node knows its NNi values for i = {1, 2, . . . , D} where D is the network diameter.

Fig. 8(a) illustrates the collective estimation for all schemes. While estimates may not exactly match the real avail-
ability, Q-LS and R-HC succeed in getting the skewed nature of the availability distribution. This result is appealing
considering the simplistic nature of the estimation schemes. Ability to distinguish two content items according to their
availability is of practical importance, especially in the realm of caching algorithms. Even if the estimated availability

4To be exact, these methods give estimates for the content availability in the node’s own neighborhood, which is also the area that is
relevant for node’s own queries.
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Figure 8: Content availability estimation on a scale-free network.
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Figure 9: Availability estimation errors for two nodes on a scale-free network.

diverges from the actual values with some error, Q-LS and R-HC can decide which item is more available out of a set
of items. Using this information, a cache replacement algorithm can decide on which item to evict and which one to
admit. Comparing the three approaches, Q-LS seems to have the highest accuracy which is closely followed by R-HC.
R-CP has low accuracy particularly for highly available items. We attribute this to the fact that these requests are
satisfied from very close nodes (e.g., one or two hops away) and therefore the responses are only relayed by a very
few nodes. That means only very few nodes receive the response and improve their knowledge about the network.
Besides, even if there are many content providers for a particular content, a node gets only one response from the
closest provider. Therefore, only some (closest) providers are discovered by the nodes. Another thing to notice is that
R-HC overestimates the availability almost all the time (except for the most available contents) whereas R-CP always
(naturally) underestimates the availability. For the former, overestimation is due to the short network diameter of the
considered network. In other words, the network has a small-world structure which is an emerging structure in human
contact networks [4] and the longest path a query and response message can follow is much shorter compared to the
number of nodes. For example, in the considered setting network diameter is 12 whereas average shortest path length
is 5.45. Considering the availability calculation in (18), the calculated availability for a query following the longest
path would be 1/12 = 0.08, following a typical path would be 1/5.45 = 0.18. Since the lowest content availability in
our setting is 0.07 and average content availability is 0.14, R-HC results in overestimation of the availabilities.

Regarding the local estimates at each node, Fig. 8(b) suggests that Q-LS has small variance across the nodes
whereas the approaches utilizing the response messages are markedly affected by the node’s position in the network.
From Fig. 8(b) and Fig. 8(c), we articulate that more central nodes have more observations due to their central position
in routing messages and they can exploit the diversity in the message hop counts. This increased diversity gives less
biased information about the content availabilities which in turn increases the estimation accuracy. Q-LS does not
suffer from this effect as nodes do not solely rely on the number of messages with a particular hop count but rather
consider the relative change in the number of received messages with increasing number of hop counts. To verify our
claim, we calculated the correlation coefficient between the betweenness centrality of nodes and errors resulting in each
approach. For Q-LS, correlation coefficient is -0.15 which can be interpreted as no correlation whereas it is -0.66 for
R-HC and -0.43 for R-CP, which corroborates our claim.

Considering a distributed scheme where nodes do not exchange their estimations, we can state that the Q-LS is
the best approach. However, it requires the knowledge of the neighborhood size of each node at a specific hop count.
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Figure 10: Estimated content availability under Q-LS with various error values in the knowledge of neighborhood size.

While this information could be gathered via message exchanges, it may not be always accurate. We depict the effect of
inaccuracy in the knowledge of the neighborhood size. Let us define this inaccuracy as the fractional deviation from the
actual neighborhood size. We consider the deviation from the actual values uniformly distributed in [−ε,+ε]. Fig. 10
illustrates the estimated availabilities under both perfect knowledge and imperfect knowledge: ε = {0, 0.10, 0.20, 0.40}.
All schemes maintain similar performance with δp ≈ 0.03.

From the previous figures, we infer only the absolute average errors but cannot observe how the estimation error
changes across the content items. Let us take two nodes (n1 and n80 with very different betweenness centralities) as
example and analyze their estimation error for each content item under the three estimation schemes. Fig. 9 depicts
the estimation error for these two nodes. Note that different than the previous figures, the estimation errors are signed
where negative values stand for underestimation of the availability and positive values for the overestimation. The
figures help us understand the difference in nodes’ estimations as well as difference across the contents. As we already
observed in Fig. 8(b), in case of Q-LS nodes exhibit similar performance in estimating the availability. Moreover, we
do not observe a clear trend across the contents. In other words, estimation error does not depend on the availability of
the items. In contrast, R-HC shows different behavior. From Fig. 9(b), we have two observations. First, n1 has higher
accuracy (i.e., errors approaching zero) compared to n80. Second, although errors being quite small, n1’s estimations
are mostly on the optimistic side, i.e., positive values except for the items with high availability. On the other hand,
n80, a node at the edge of the network, may both underestimate or overestimate depending on which queries and
responses reach to this node. This effect is also observed in Fig. 9(c). As it is difficult to observe all providers of
a content item, both nodes underestimate the availability. However, n1 as the most central node maintains higher
accuracy compared to n80 whose accuracy improves for contents with lower availability.

In a nutshell, Q-LS is the most accurate approach which is minimally affected by the node’s structural position
in the network as well as the content’s availability. Regarding complexity, this approach requires the knowledge of
neighborhood size. However, our experiments suggest that even when the nodes’ knowledge of the neighborhood size
is not perfect, nodes can acquire a good estimation of the availabilities using regression. Approaches using response
messages - both R-HC and R-CP, are subject to variation depending on the node’s centrality and the content’s
availability. However, they do not require any knowledge about the network. In terms of space complexity, given
that opportunistic networks and many real world networks satify H � N , Q-LS and R-HC are less demanding with
complexity of O(H ×M) compared to R-CP of complexity O(N ×M).

6.2. Availability estimation on human contact traces

In this section, we evaluate performance of our estimation schemes when various complexities of real world systems
are in effect. We use Infocom05 and Infocom06 traces [20] that are collected from groups of conference participants
carrying iMotes throughout the conference (i.e., approximately 3–4 days). Infocom05 has 41 users whereas Infocom06

has 98 nodes (including some stationary nodes). Every minute one of the nodes initiates a query for a particular
content item. Admitted queries as well as responses for these queries are routed using hop-limited search protocol [5].
We set hop limit to 10 not to affect the estimations by hop-count based approaches. We consider Zipf availability
with parameter 0.6 and Weibull content popularity distribution with k = 0.513 as suggested in [6]. We implement
our scenarios using ONE simulator [15] and report estimations at the end of the simulation. For Q-LS, we derive
estimations directly using (20). For R-HC, each node records exponential moving average of each content’s availability
based on the relayed messages. Estimated values are updated using equal weights for the previous estimation and the
new observation.
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Figure 11: Results for Infocom06 trace for each scheme.
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Fig. 11 shows the results of our experiments on Infocom06 trace. As key trends are very similar in Infocom05,
we report results only for Infocom06. In Fig. 11(a), we see the distribution of (signed) estimation error. Values on
the left of the vertical line at x = 0 stand for underestimations, whereas to the right values represent overestimated
availabilities. While most of the schemes overestimate the availability, R-CP always underestimates as nodes may
not observe all the content providers for a particular item. Fig. 11(b) plots the median of estimation error that is
calculated over all nodes and all content items. Hop-count based R-HC significantly underperforms when compared
to other two. This behaviour is due to the short diameter of the considered contact networks: the connectivity graph
of the nodes at the end of the simulations is a full mesh. Similarly, query and response paths are very short, e.g., only
a few hops. In Fig. 11(c), we plot the average estimated availability and the real availability for each content item. In
agreement with Fig. 11(a), we observe the underestimations and overestimations of each scheme. Moreover, we can
observe where the errors lie, either in the head or the tail of the skewed availability distribution. Note that the number
of generated queries for content items follow a similar skewed curve, i.e., Weibull distribution. Therefore, nodes have
different numbers of observations for each content: more observations for popular contents and only a few for the least
popular one. However, for the considered setting we do not observe the effects of this divergence, possibly because of
long observation time.

Regarding differences among nodes, Infocom06 trace represents a well-connected network where all nodes have a
similar contact patterns. Therefore, there is no significant differences between nodes’ estimations.

In short, our evaluations show the feasibility of the considered estimation schemes under unideal practical settings.
However, we should note that there are many aspects to be studied further, e.g., how to define accuracy metric, for
more efficient estimation of availabilities.

6.3. Search of a specific content

Let us next consider different search strategies. Here we assume that a node either has the (complete) answer to
a query, or nothing, i.e., the Bernoulli case. We compare the learning strategy (see Section 4.1.3) that determines the
content availability p during the search to the optimal dynamic strategy that (miraculously) already knows the correct
value of p. Our numerical results show that the difference in the performance is typically minimal. In other words, the
learning search strategy works very well across many values of p and one only has to know the transmission cost e.

Fig. 12 (left) illustrates the maximum search depth n∗ with the learning strategy (bold green line) and the optimal
dynamic strategies that know the probability p of a node having the sought content, when p = {10%, 20%, 50%}. Note
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that the maximum search depth with the learning strategy is independent of p (by design) and essentially depends
only on the ratio of the value of the sought information (normalized to one here) to the unit transmission cost e. We
see that the learning strategy is an educated compromise.

Fig. 12 (middle) illustrates the resulting performance, i.e., the mean utility of a search in the three cases, p =
{10%, 20%, 50%}, as a function of the transmission cost e. The dashed lines correspond to the performance with the
learning strategy, and the solid lines to strategy that is aware of the correct value of p. We notice that the difference is
negligible as soon as p < 50%, or e < 0.25. In particular, when p is smaller than 50%, a typical search involves several
nodes before the content is found, and during this time a good estimate for p becomes available, which explains the
observed good performance of the learning strategy. Static policy, included merely for comparison, cannot be expected
to perform well. Fig. 12 (right) shows the difference in the expected utility when compared to the dynamic strategy.
We note that the difference is considerable when the absolute values vary from zero to one.

Next we consider the performance penalty in terms of the mean utility Un due to an unreliable return path
characterized by the parameter γ. Fig. 13 illustrates the equivalue contours of the utility in the ideal case with γ = 1
(solid lines) against the setting where γ = 0.7 (dashed lines). We can observe that the performance deteriorates when
links become unreliable (e.g., due to mobility), but, at least with γ = 0.7, the performance loss is reasonable given the
search algorithm takes γ into account. This suggests that a well executed search makes sense also in low to moderate
mobility scenarios (γ = 0.7).

7. Conclusions

Forwarding packets in a meaningful manner in opportunistic networks is a difficult task. The basic routing schemes
such as the plain flooding and the spray and wait algorithm [22] try to solve the one directional problem of sending
information from a source to a particular destination. In our case, the setting is significantly more challenging because
(i) we do not know who has the information, and (ii) the sought content must be delivered back to the searching
node. The first important contribution of this paper is the analytical treatment of the “self-guiding” search process in
wireless ad-hoc networks, where the query takes actions based on its a priori information and the observations made
during the search. The second important contribution are the different methodologies to estimate the availability of
the information a priori based on earlier queries each node observes. This information is valuable as it enables nodes
to adjust the search parameters optimally. In more general terms, the question is what the query can learn from the
surroundings, and how to capitalize that information. Other possible quantities that might be exploited are the node
degrees (with an appropriate definition in this possibly highly dynamic context), and community memberships.

In many cases, we were able to characterize the optimal search strategy that maximizes the expected utility with the
given initial information. Despite of the shortcomings of our simplified models, we believe that the similar principles
as studied in this paper can be also applied in practice in a more complete setting. In our future work, we will include
to the model more realism by adding the option to replicate the query, where the additional challenge comes from the
distributed decision making. Similarly, the heterogeneity of the actual scenarios poses a notable challenge.

Finally, we introduced several schemes for availability estimation and discussed the pros and cons of each approach.
While accuracy of each scheme depends on the internals of routing, e.g., how many hops, search stopping criteria,
TTL of the messages, we presented both analytical explanation and simulations for evaluating the performance of the
proposed techniques.
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