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Abstract—Due to the fierce competition for the wireless spec-
trum, operators have recently focused on short-range communi-
cations which promises higher spectral efficiency, lower energy
consumption, and less strain on the operators’ core network.
Mobile opportunistic communications, i.e., short-range commu-
nications without any network assistance, is of considerable
practical value since it entails almost no monetary cost and
does not rely on any infrastructure. Compared to the extensive
work on opportunistic networks, the predominance of video and
other content calls for new content-centric approaches. To this
end, the motivation of this paper is to explain how opportunistic
search can discover the content stored in remote mobile devices
and deliver it to the requesting node. We abstract the problem
domain as three layers, namely network topology, content, and
query; and describe the interactions among these components.
After reviewing each layer, we introduce several schemes for
content availability estimation that do not rely on any infor-
mation exchange but simply use already available information.
Additionally, we highlight some open research directions.

I. INTRODUCTION

Mobile devices have been dramatically increasing in number
as well as the data volume generated by these devices, e.g.
users taking pictures, recording videos. Additionally, ubiq-
uitous sensors produce massive data. These changes have
resulted in a shift from the wired Internet being the only data
reserve to a system of highly dynamic distributed data sources.
Moreover, three facts shift the role of mobile devices from
passive consumers to more active entities: (i) device-to-device
communications emerge as a solution for removing the strain
on the operators who have limited spectrum and resources,
(ii) increased concerns for privacy promote the cloud coming
closer to the network edge, (iii) caching closer to the edge,
even on a mobile device, gains more credibility as video traffic
accounting for roughly half of mobile data traffic is highly
redundant (i.e., skewed popularity distribution). On the other
hand, while what is stored on the Internet is well indexed and
easily accessible, that is not the case for this newly emerging
data reserve. Although users mostly upload the generated
content to an Internet service such as Facebook, sometimes
publishing on a central server is not desirable nor feasible
for various reasons. For these cases, opportunistic networking
provides a means of accessing this data reserve.

Mobile devices form an opportunistic network by commu-
nicating with nearby devices in a mutual transmission range

via their radio interfaces (e.g., WiFi Direct). Typically, end-
to-end links are missing in opportunistic networks due to high
mobility or low network density. Despite several challenges for
viable operation, the motivations for opportunistic network-
ing are manifold: (i) communication is possible even where
there is no or weak infrastructure, (ii) robust communications
without infrastructure dependency, (iii) direct communication
between transmitter and receiver which in turn facilitates
higher bit rates, lower delay, and lower power consumption on
this direct link, (iv) spectrum reuse gain owing to the lower
transmission power, and (v) operators can benefit from mobile
data offloading by decreasing the traffic on their core network.

For exploiting the valuable and huge volume of information
locally stored in the digital pockets, i.e. mobile devices,
efficient mechanisms to discover and retrieve the content are
paramount. Use cases may span a wide range of scenarios
including search in a dense network, e.g., search for a festival’s
program during the event, or in a sparse network, e.g., for the
shuttle hours to a city in a summer cottage. In the first case,
search completion time is more strict compared to the latter.
However, owing to the temporal and spatial locality (somebody
nearby might have downloaded it already), the search may
be completed faster compared to the latter. With advanced
mechanisms, e.g., network coding, more bandwidth-hungry
content such as video clips can also be delivered in an
opportunistic manner.

In this paper, we aim to:
• Clearly describe the opportunistic search problem do-

main, components, and interactions among these compo-
nents (Section II and Section III),

• Describe a generic framework to understand the impact
of content availability, user tolerance to waiting time, and
network mobility on search performance based on our
previous research [1], [2] (Section IV),

• Introduce several schemes for content availability estima-
tion (Section V),

• Overview the literature (Section VI) and list future research
directions (Section VII).

II. OPPORTUNISTIC SEARCH

As the volume of data in the mobile networks increases
in size, efficient access to the relevant information becomes
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Fig. 1. An example search for the festival program in the festival area.

challenging. First, the relevant content holders should be
reached possibly by admitting a search query, and next, data
must be retrieved from these nodes. We refer to this process
as opportunistic search. Requested information may include
web pages, video clips, etc. Consider the simple scenario
in Fig. 1. Searching node A initiates a search query which
is carried physically by the mobile nodes and forwarded
to other nodes upon contact. Compared to the conventional
search, opportunistic search is nontrivial due to two major
challenges: lack of a central database to store any content
index [3] and time-varying network topology. While nodes
may build distributed indices or local knowledge bases to
partly alleviate the former challenge, research on opportunistic
routing provides some insights on how to handle the latter
in protocol design. However, opportunistic search demands
special treatment because of the two-step nature of the search.

At the first step, an admitted query is spread in the network
with the goal of locating the content provider(s). We call this
step content discovery and refer to the path a query follows
as the forward or query path. After the query reaches one
of the providers, a response generated by this provider is
routed towards the searching node in the second step. We
name this step content delivery and refer to the path a response
follows as the response or return path. Content discovery has
to tackle the uncertainty of the destination(s) to be reached. In
contrast, content delivery is an end-to-end routing. However,
it depends on the success of the first step and thereby may
not be decoupled from the forward path. Besides, delivering
the response may be challenging as the target is a single node
rather than a subset of nodes.

Regarding the amount of data bits carried in the query and
response, the latter is expected to be (much) larger in size. A
typical search query from a mobile device consists of a few
keywords [4]. In contrast, considering the predominance of
video traffic, response messages carrying the requested content
would be much larger. For other queries, e.g., a train schedule,
responses may have a comparable size to that of queries.

An ideal search scheme should meet the following goals:
(i) it finds relevant content(s) with high probability, (ii) it
completes quickly, e.g., before the user loses interest or the
content becomes stale, and (iii) it minimizes the number of
redundant transmissions to save bandwidth and battery life.

However, meeting these goals simultaneously is challenging
due to the inherent uncertainty of opportunistic networks.
In the next section, we provide a high-level abstraction of
the considered system identifying the key components of
opportunistic search and interactions among them.

III. THREE LAYERS: NETWORK TOPOLOGY, CONTENT
ITEMS, AND QUERIES

Fig. 2 abstracts the principal components of the considered
system: network topology, content items, and queries.

A. Network topology

As Fig. 2 depicts, a node is a mobile device storing content
subject to physical constraints (e.g., storage, energy, and wire-
less radio capabilities) and is coupled with a user who creates
content, initiates queries according to her/his interests, and has
a social context. Therefore, network topology represents the
relations among nodes both in the physical world and the over-
laying “social” world. Two nodes are connected at the wireless
connectivity layer (WCL) if one’s transmission is decodable
at the other. In the social connectivity layer (SCL), two nodes
are connected if there is a “social” relation (e.g., friendship,
trust) between these nodes [5]. Social graph represents existing
relations among the nodes in the SCL and remains relatively
stable compared to the relations in the WCL.

In opportunistic networks, WCL is subject to frequent
changes due to intermittent and highly dynamic connections.
Consequently, network connectivity is represented as either
the underlying connectivity graph at time t or the expected
topology in the long run. While we call the former a network
snapshot, the latter is known as a contact graph. Since
human mobility shows some patterns and thereby is highly
predictable, contact graphs are considered to be reliable in
the long run. On the other hand, these models fall short of
modelling the random contacts (e.g., weak ties) which are
useful for message dissemination.

Node mobility is mostly characterised by the average pair-
wise contact rate. As nodes exhibit different social behaviour,
node contacts are mostly heterogeneous, i.e., the contact rate
between node i and node j is different than the contact rate
between node i and node k. The duration of a contact depends
on the nature of the contact, e.g., an acquaintance or a close
friend, and affects the transmission capacity of the contact.
Generally, inter-contact time distribution is approximated by
exponential distribution for analytical tractability. However,
analysis of real mobility traces suggests that power-law dis-
tribution or power-law with an exponential tail represents the
mobility characteristics quite accurately [6].

Basic factors determining the network topology are
daily habits (e.g., working hours), social interactions
among users (e.g., community-based movement), point-of-
interests (e.g., café). Knowledge of the network topology
is compulsory to develop search algorithms that exploit the
transmission opportunities in WCL to the full extent and
account for the node behaviour in SCL (e.g., willingness to
forward messages).
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Fig. 2. Three components of the search system: the network topology
consisting of social and wireless connectivity sub-layers, content, and queries.

B. Content items

Content items in a mobile device are either generated by the
device user, e.g., a video captured at a concert, or downloaded
from the Internet and other nodes. For making the local
content available to other users, an application running on the
user device can provide the necessary means for managing
the content (e.g., tagging with keywords or categories) that
the user has consent to share or make accessible to others.
While there is some literature on how mobile users consume
digital data, users’ behaviour for generating content (when,
where, and what type of content) remains unexplored. Besides,
not all consumed content is stored in the device due to
the limited storage. Therefore, our knowledge on content
distribution (which node(s) holds the content) as well as their
availability (fraction of nodes holding the content) is limited.

Content moves around as the nodes move. To bypass the
issue of constantly changing network topology, content can
be decoupled from the nodes and be mapped to geographic
location [7]. In fact, content-centric design is a perfect match
for opportunistic networks as it concentrates on the content
rather than targeting a specific host as the provider of this
content and initiating an end-to-end routing [8]. For some use
cases, content availability could be controlled (e.g., operators
can select a certain number of seeds in mobile data offloading
scenarios) or tracked by a central entity [9]; for totally
self-organized networks, availability may change with time.
Although common sense suggests that more popular items will
be more available in the network [10], caching policies as well
as user behaviour (e.g. deleting the content immediately after
accessing) may affect availability.

C. Queries

Research on content-centric networks agrees that owing to
the skewed nature of the content request distribution, content
delivery algorithms can provide efficient services by exploit-
ing this property. Popular content is stored in the network
by popularity-biased caching algorithms while less popular
content could be delivered from outside the network, i.e.,
the origin server. Understanding the distribution of queries,

referred to as content popularity distribution, is essential to
develop caching or replication schemes to achieve high user
satisfaction while attaining high resource efficiency.

The search behaviour on high-end phones resembles search
on computers more than search on a conventional mobile
phone [4]. Hence, it may be reasonable to assume that in
opportunistic networks the query to content mapping (dashed
arrows in Fig. 2) would follow skewed distribution (e.g.,
Zipf). Assuming that these submitted queries are fulfilled, i.e.,
requested content is delivered to the searching nodes, one
expects content availability to exhibit a similar distribution to
that of content popularity. However, as discussed in Sec. III-B,
there may be cases where these two distributions may differ.

Regarding the query to user mapping (arrow 3 in the
figure), we expect that users are more likely to search for
content that attract their interests. Hence, we call this mapping
interest distribution which may exhibit spatial and temporal
dimension. For example, users are more likely to search for
specific content based on their location, e.g., people at the
railway station search for a train schedule.

IV. KEY FACTORS AFFECTING OPPORTUNISTIC SEARCH
PERFORMANCE

In this section, we provide some insights on the key factors
affecting search success in opportunistic networks. To this
end, we consider an elementary model [1], where (i) each
node has the same likelihood of storing a particular content
item and (ii) each node is equally likely to meet every other
node. Moreover, we assume a flooding-based search, which
is desirable for opportunistic networks as it requires no state
information. We acknowledge that the real world is far more
complex (e.g., heterogenous contacts among nodes) and actual
scenarios can differ significantly. However, as our aim is to
find fundamental factors affecting the search performance that
are widely applicable, we assume the parsimonious model with
as few parameters as possible that still captures the essential
characteristics of opportunistic networks.

More specifically, our model is as follows. In a network of
N mobile nodes, searching node ns admits a search for some
content that is held by α fraction of the nodes referred to as
content providers. Every node receiving a copy of the query
forwards it to other nodes it meets. Each content provider
receiving the query creates a response and initiates response
routing. To alleviate the excessive message replication, the
nodes limit the total number of forwarding to M for the
forward path and M ′ for the response path by recording
the number of copies in the message header and updating it
whenever the message is forwarded, e.g. binary spraying.

Assume that the user is patient in receiving a response for
her query: that is, the query does not have strict time restric-
tion. For such a query, we are interested in the probability
that the query reaches one of the content providers of the
requested content (referred to as forward path success ratio)
and in the probability that the user receives the requested
content (referred to as search success ratio). Given that M
nodes receive the query, we can approximate the forward path
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success ratio as1:

Forward path success ratio ≈ 1− (1− α)M . (1)

Next, we calculate the search success ratio as:

Ps =

M∑
m=1

Pr{m content providers are discovered}

× Pr{at least one of m responses reaches ns}.

We can expand the above formulation which leads to:

Ps=

M∑
m=1

(
M

m

)
αm(1−α)M−m

(
1−(1− M ′

N − 1
)m
)
.

Let γ = M ′

N−1 , i.e., the probability that a response reaches the
searching node. Then, we can simplify Ps as:

Ps = 1− (1− αγ)M . (2)

Using (1) and (2), we illustrate the success ratio as a
function of allowed message replication, i.e., fraction of nodes
receiving the message, under various α in Fig. 3(a). Before
discussing Fig.3(a), let us revisit our motivating scenario in
Fig. 1. Since A loses interest for the searched information after
some time, it may be more practical to set time limitations for
the forward (T ) and response path (T ′) instead of M and
M ′. From a design perspective, replication can be restricted
by a hop limit, i.e., a message can be forwarded to maximum
h hops. Under time and hop count limitations, an initiated
message can reach at most Nh(T ) nodes which we refer to
as time-restricted h−hop neighbourhood of a node.2 Hence,
in what follows, we replace M and M ′ in (2) by the related
neighbourhood values Nh(T ) and Nh(T

′), respectively.

A. Response paths are more challenging

From Fig. 3(a), we observe that the search messages have
to spread to a certain number of nodes for a particular content
availability to ensure a given level of search success. The num-
ber of nodes receiving the message denoted by Nh(T ) depends
on node mobility: not only the average inter-contact time but
also how diverse the nodes’ contacts are. For example, the
contact rate may be high, but all contacts are among each other
and new nodes are seldom met. Therefore, Nh(T ) remains
stable over time. Fig. 3(b) plots the cumulative neighbourhood
size with increasing h for Infocom06 mobility trace which
records the contacts among N = 98 nodes.3 Observation time
window and hop limit affect the neighbourhood. Notice the
significant increase in Nh(T ) at h = 2 and the vanishing
increase after h = 4.

The second parameter α leads us to the following insight.
Given that the response path is a search for a single node,
we can calculate the success of the response path similar to
the success of the forward path where α = 1

N . This brings
us to the fact that under the same T and h constraints, the

1Please refer to [1] for more details on the derivations.
2As forwarding consumes energy, nodes may not always relay the messages.

This results in lower Nh(T ). However, we assume that all nodes are
cooperative, e.g., with the help of some reward mechanisms as in [9].

3The traces are available at http://crawdad.org/cambridge/haggle/.
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Fig. 3. (a) Search success for various α = {0.05, 0.15, 0.40} and (b)
cumulative neighborhood for Infocom06 for various T , from [1].

response path attains a lower success ratio. Generally speaking,
response path requires more hops or time for completion than
forward path. Note that (2) is derived for a flooding-based
scheme making it hard to generalize to more conservative
search schemes. Yet, it is instrumental to gain insights on
different phases of the search.

B. Optimal search depth depends on content availability and
tolerated search time

To ensure search success to be at least δmin, how should
we set the hop count limit? From (2), we can derive the
minimum Nh(T ) by setting Ps > δmin. However, it is
nontrivial to model Nh(T ) as the order of the meetings and
T determine the growth in an opportunistic network. Hence,
we can rely on numerical results similar to Fig. 3, and obtain
the corresponding hop count for a given T and α.

Briefly, content availability, user’s tolerance to waiting time
for a response, and mobility are three key factors determining
the search performance. The product λtotT represents the total
number of contacts occurring in the duration of the user’s
waiting time where λtot is the aggregate contact rate among
all nodes. A search scheme cannot offer much if the network
is limited in mobility and density, i.e., low λtotT . If both
α and λtotT are low representing a scenario where content
is scarce and very few contacts are experienced, the search
performance is expected to be low. However, if the user does
not impose very stringent time requirements or if the content
is abundant in the network, search becomes easier. In such
cases, it is sufficient to have a low hop count limit (e.g., two
or three [1]) to obtain good performance. That is, when αλtotT
is large relative to the expected number of content providers
met during the search time, limiting the search to a few hops
still achieves good results. As αλtotT decreases, the required
hop limit to maintain good search performance is larger.

Determining the key factors helps us identify the conditions
leading to low performance and engineer the networks such
that these conditions are avoided. For example, all search
schemes will perform poorly if the user is impatient and
the content is only available at a very few nodes. In such
a case, we may not be able to increase the user’s patience,
but we can increase the content availability by caching or
active replication. Hence, inference on the operation region
is paramount to taking appropriate action.

http://crawdad.org/cambridge/haggle/
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V. ESTIMATING THE CONTENT AVAILABILITY

To set the search parameters appropriately, nodes can infer
the content availability passively by inspecting the messages
they relay or actively by exchanging some information to
improve their observations. We categorize estimation schemes
as active and passive [2] as illustrated in Fig. 4. In this article,
we focus on passive schemes, which can use information
carried in queries, responses, or both.

What kind of information does a query and response mes-
sage carry? Regarding queries, the message header encapsu-
lates the definition of the query (e.g., keywords and searching
node) and the route of the query (e.g., the path it has travelled
so far). Response headers store the id of the content provider in
addition to the query-related information. Assume that nodes
run hop-limited routing protocol [1] to search and each node
exchanges the status of common messages with each other
to avoid the spreading of outdated messages (i.e., already
delivered queries and responses). Before deleting outdated
messages, nodes update their estimation of the related con-
tent’s availability. Since a node has multiple observations for
the same content, it applies exponential moving average to
update estimated availability.

Let α̂k(i) denote the estimated availability value at node i
for content ck. We calculate α̂k(i) using four approaches:
• Exploiting the query hop counts (Q-HC): As proposed in

[2], a node can estimate αk after i nodes have searched in
their local storage with a failure of finding ck by inspecting
the number of hops a query has travelled. Estimated avail-
ability from a single observation is the inverse of one plus
the query message’s hop count.

• Exploiting the response hop counts (R-HC): A node calcu-
lates the average path length between a searching node and
the content provider. The hop count in a response’s header
reflects this information as it records the hop count of the
received query. Content availability is then the inverse of
one plus this path’s length.

• Exploiting the number of carriers (Q-NC): Assume that
each node records the number of replications of each query
and updates it after forwarding the query to another node.
Then, estimated availability is the inverse of one plus the
total number of carriers. Note that each node has only local
information about the total number of carriers due to the
distributed nature of routing.

• Exploiting the number of content providers (R-CP): A node
keeps track of the providers for each content by extracting
the provider ids from the response message header. Given
that the node is aware of the network size (or estimates it),
availability equals to the fraction of nodes with this item.
For each scheme, we calculate the average estimation error

over all nodes and all content items. We define the estimation
error as the difference between the estimated and actual
availability of an item by that node, ni, using a particular
scheme: Errork(i) = α̂k(i)− αk.

We run our experiments using Infocom06 trace.4 As for
content items, we set M = 100 and availability is driven

4Our analysis on Infocom05 exhibits similar trends, therefore we report
only results of Infocom06.
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from Zipf distribution with parameter 0.6 while queries are
generated according to Weibull popularity distribution with
k = 0.513 as [11]. Each message’s lifetime is two hours, and
every minute a random node initiates a query.

Fig. 5 illustrates distribution of estimation errors for all
nodes and content items under all schemes. Notice that R-CP
only underestimates availabilities as it relies on the number of
content providers. In contrast, hop-count-based schemes, i.e.
Q-HC and R-HC, result in overestimation. Considering the
absolute error (not plotted), our results suggest that Q-NC and
R-CP perform very similarly and outperform others in terms of
estimation error. Compared to R-CP, Q-NC can be preferable
as it does not require network size estimation. Lower accuracy
of Q-HC and R-HC is due to the well-known small-world
phenomenon. As paths between nodes are short in terms of
hop count, nodes tend to overestimate the content availability.
For the head part of the content set (i.e., highly available
items), estimations by Q-HC and R-HC are usually lower than
actual availability, whereas for the tail part estimations are
optimistic. Since the considered content availability exhibits
long tail property, estimations by hop-count-based schemes
deviate drastically from the actual availability.

Fig. 6 plots the absolute estimation error for each content
averaged over all nodes’ estimation error for this particular
content, e.g., nodes exchange their observations. Error bars
show the variation among nodes. Note that the content items
are sorted in decreasing order of availability. We also calculate
the correlation between the content’s availability and the
related estimation error. The mean error follows the same
ordering among schemes: Q-NC and R-CP having the lowest,
followed by R-HC and Q-HC. Regarding content availability
and related estimation error, Q-HC shows some level of
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TABLE I
RELATED WORKS: WHETHER AND HOW THEY CONSIDER EACH LAYER.

Related work Content awareness Network Topology Performance Metrics HopsWCL SCL
Sermpezis et al. [10] - X X Success, delay 1-hop
Fan et al. [3] Geo-community X X Success, delay, overhead 2-hop
Hyytiä et al. [2] Estimated availability X - Search utility, success, overhead Multi-hop
Bayhan et al. [1] - X - Success, delay, overhead Multi-hop
Liu et al. [12] Expertise X X Success, delay, overhead Multi-hop
Pitkänen et al. [13] - X X Success, delay, overhead Multi-hop
Shen et al. [7] Metadata index X - Average hop distance to content, success,

overhead
Multi-hop

Talipov et al. [14] - X X Success, overhead, energy consumption Multi-hop

negative correlation. Q-NC and R-CP exhibit very strong
positive correlation, which implies that these schemes are less
accurate in estimating availabilities of popular items. Another
point to note is that nodes have more observation about popular
content items due to skewed popularity distribution and only
a few observations about unpopular items. Although we have
not observed its impact, Q-NC and R-CP may have lower
performance for these items compared to more popular items.

VI. RELATED WORKS

We can classify search schemes as content-oblivious [1],
[10], [13], [14] and content-aware [2], [3], [7], [12] based
on their consideration of content characteristics in tuning the
search parameters (see Table I). Generally speaking, content-
oblivious schemes do not adapt the search strategy according
to the requested content, but focus on routing and hitting
the content by ensuring a good coverage of the potential
content providers. For example, nodes apply hop limitation
to each message to avoid the excessive cost of flooding
in [1] and authors evaluate the effect of hop count on the
attained search success ratio. In [10], the searching node
retrieves the content directly from the provider, i.e., one-hop
forward and return paths, for which the search delay depends
on content availability as well as contact events between
the searching node and the providers. The relation between
content availability and popularity is modelled as a conditional
probability of availability given popularity which reflects both
uncorrelated, proportional, and deterministic availability. Un-
like [10], a query can take multiple hops in [13] in which
each node locally decides to terminate a query based on
the expected number of nodes that have acquired the query
replica. The authors observe that popular content has a high
likelihood of being discovered, but less popular content is

found by chance under the examined protocols. The hurdles
of lack of awareness in opportunistic networks are mitigated
by redundancy, i.e., opportunistic protocols replicate messages
and route them in parallel rather than routing a single copy and
re-transmitting it in case of failures. Some schemes introduce
a limited number of replicas at the time of query generation
and increase redundancy on the fly at each node [12] whereas
some flood the query first and later reduce redundancy by
terminating the queries [13], [14]. A query may reach a
provider but may have very little time for expiry for content
delivery. Since forwarding such a query is probably wasteful,
nodes should terminate these queries. The forwarding decision
may also consider the distance from the searching node’s
estimated location to avoid spreading queries with little chance
of reaching the searching node [14].

Content-aware schemes [2], [3], [12] guide the search based
on the local knowledge about the searched content, e.g., its
availability, mapping between content and geolocation, or
people’s interests. As the content with higher availability is
located on average closer to the searching node, a query can
be limited to the expected distance from a content provider or
each node can decide on terminating the query and sending
a response based on the observed availability [2]. In [12],
for each query category each node claims its expertise which
may not match its real capability for responding to the query.
The expertise values are updated based on feedbacks from the
query issuer according to the responses.

While the above schemes make no association between
the space and the content items/interests, the geo-community
introduced in [3] represents “clustering of users with com-
mon interest and contacting each other frequently at a geo-
location”. A query is directly mapped to a geo-community.
Each node is assessed according to its capability to move to
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the target geo-community as well as its capability of carrying
response back to the searching node. Similar to [3], each
content is mapped to some geographic region in [7] where
nodes publish the metadata of their content applying a hash
function. Multiple nodes located at the corresponding region
store the metadata and respond to the requests for this item
with the provider’s information. While analysis in [7] proves
the low communication overhead of the their approach, storage
and computation overhead are paramount for mobile nodes.

VII. OPEN RESEARCH QUESTIONS

Information-centric networking (ICN) approaches: ICN can
mitigate the current issues of opportunistic networks due to
unstable connectivity by relaxing the requirement for end-to-
end connections and putting the self-contained data units, i.e.,
content, at the core of protocol design [15]. As argued in [16],
MANET scenarios are mostly “data-centric” making content-
centricity a natural fit for them. Even if content providers are
known by each requester, it may be challenging to reach these
destinations using connection-oriented protocols. Moreover,
as discussed before, maintaining the information related to
coupling between the content and its provider is too trou-
blesome in mobile networks. In ICN, caching and content
placement play a key role in providing more efficient services
as well as decreasing content delivery cost. However, deciding
on where (e.g., node or geolocation) to cache as well as
what to cache turns caching in opportunistic networks into
a harder problem [8]. Exploiting the content diversity such as
popularity or size is another direction in this line.

Awareness: Nodes can employ passive or active awareness
on all layers such as network density, temporal topology
characteristics, and content popularity. Estimation schemes
under network mobility as well as how the acquired awareness
could be incorporated into opportunistic search design are
interesting directions to explore.

Quantifying the benefits of indexing: One of the most
compelling challenges in search is the lack of the index; nodes
do not know the providers. A natural question arises: what
would be the performance improvement if each node had an
exact copy of the index? Which items to index as well as how
to construct and distribute the index are two arising questions.

Measurement-based analysis: Measurements help to com-
prehend the systems in the real world better. In this line, we
think that the network topology layer has received substantial
effort whereas the content and query layers remain unexplored.

VIII. CONCLUSIONS

Understanding how opportunistic search operates is crucial
for retrieving the remote content efficiently and adapting to
the content-centric use of the Internet. To this end, we have
provided the key components of an opportunistic network
with a three-layer abstraction: network topology, content, and
queries. In addition to overviewing the characteristics and key
challenges related to each layer, we discussed the interactions
among layers. Relying on a flooding-based search, we pro-
vided some insights on the key parameters affecting search
success, namely content availability, tolerated waiting time,

and node mobility. Improving the nodes’ understanding of the
properties and characteristics of these three layers improves
search efficacy. We have introduced simple yet promising
content availability estimation techniques. Accurate inference
of the content availability is challenging as nodes’ observations
are fairly limited and dependent on their mobility and content
requests. Nevertheless, nodes can observe their states passively
while routing the queries and responses.
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[13] M. Pitkänen, T. Kärkkäinen, J. Greifenberg, and J. Ott, “Searching for
content in mobile DTNs,” in IEEE PerCom, 2009.

[14] E. Talipov, Y. Chon, and H. Cha, “Content sharing over smartphone-
based DTNs,” IEEE Trans. on Mobile Comp., vol. 12, no. 3, pp. 581–95,
2013.

[15] M. Amadeo, C. Campolo, A. Molinaro, and G. Ruggeri, “Content-centric
wireless networking: A survey,” Comp. Networks, vol. 72, pp. 1–13,
2014.

[16] M. Varvello, I. Rimac, U. Lee, L. Greenwald, and V. Hilt, “On the
design of content-centric MANETs,” in IEEE Intl. Conf. on Wireless
On-Demand Network Systems and Services (WONS), 2011.


	Introduction
	Opportunistic Search
	Three layers: network topology, content items, and queries
	Network topology
	Content items
	Queries

	Key factors affecting opportunistic search performance
	Response paths are more challenging
	Optimal search depth depends on content availability and tolerated search time

	Estimating the Content Availability
	Related Works
	Open Research Questions
	Conclusions
	References
	Biographies
	Suzan Bayhan
	Esa Hyytiä
	Jussi Kangasharju
	Jörg Ott


