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How would one retrieve some content stored in a
remote mobile device if there is no Google-like
service and nodes are moving around in the
network?



Mobile opportunistic networks

Network of mobile devices with wireless communication interface

Intermittent connections, but mobile nodes, store-carry-forward

Useful information
often found locally,
homobphily, spatial
locality

No or unreliable
infrastructure, +50%
forecasted global
population will remain
offline in 2017

Tight control on
content and users (e.g.,
censorship, tracking)

Per-bit billing vs.
almost-free network
capacity



Challenges and solutions

Challenges Solutions:

Sporadic contacts (delay-tolerant© Introduce redundancy, i.e., multi-
applications) copy multi-hop routing protocols

Time-varying network topology Exploit predictability of human

Lack of precise knowledge contacts (scheduled lives!)

Energy-limited devices



How to find content without Google!

Ask every one
Epidemic (flooding)
Ask the nodes in the same/similar community
DelQueue: geo-community [Fan 201 ], Seeker-assisted search [Bayhan2013]
Ask some nodes based on some criteria
Announced experience [Liu 2014], Random walk
Wait till meeting one of the content providers
Direct delivery [Sermpezis2014]
Do not ask, wait for somebody to deliver!
Push based approach (pub/sub)
Design your own Google!

Hash-based mapping of content [Talipov 201 3]



Three components of opportunistic search

User Content Network mobility
Limited tolerance to waiting Scarce or abundant item Many contacts?
Limited energy Many diverse contacts!?

Images from: http://www.onewebcms.com/en/home/default.aspx and http://www.dotherightmix.eu/
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User Content Network mobility
Limited tolerance to waiting Scarce or abundant item Many contacts?
Limited energy Many diverse contacts!?
Message lifetime (TTL) Content availability & Real traces
Message hop-limit to bound the Neighborhood growth
cost Temporal distance to

content
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Three components of opportunistic search
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User Content Network mobility
Limited tolerance to waiting Scarce or abundant item Many contacts?
Limited energy Many diverse contacts!?

How these components affect the (optimal) search strategy and
performance (success, delay, cost)?

Images from: http://www.onewebcms.com/en/home/default.aspx and http://www.dotherightmix.eu/



Optimal search depth in a linear network

Source Query
ORORORONON W ()
Response

Query:Travels to right and a possible response to left (content discovery, forward path)
Response: every link remains available with probability Y (content delivery, return path)
Transmission cost for each link: e

Each discovered content has some value v

Bernoulli case: a node either has the content, or not with single availability parameter p



Optimal search depth in a linear network

Source Query
ORORORONON W ()
Response

Static: Searching node determines the search depth (number of hops).
Nodes route the query and response, if any

Dynamic: Each relaying node decides to stop the search or route to the
next node based on the content availability and the cost



Optimal depth: utility maximization problem

* # of nodes queried
* content availability for dynamic schemes

Utility = Expected value of content — ( expected cost of forward path

/ +expected cost of return path)

Depends on
* content availability distribution
* # of nodes queried

* # of nodes queried
* Reliability of the return links



Optimal depth: utility maximization problem

* # of nodes queried
* content availability for dynamic schemes

Utility = Expected value of content — ( expected cost of forward path

/v +expected cost of return path)

Depends on
* content availability distribution
* # of nodes queried

* # of nodes queried
* Reliability of the return links

Stop search when the next node does U U O
not bring any improvement in utility n+1 — Yn =
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/Improvement by dynamic strategy is\
higher for low availability

Nodes should be able to stop or
\_ forward the search messages! Y




Content availability and cost
determines the optimal search depth



Content availability and cost
determines the optimal search depth

How about the user and more e
realistic settings (general topologies)? &=

o



Search on more realistic topologies

Assume uniform mobility characteristics, uniform content distribution
User’s tolerance to waiting: T for each step of the search

# of nodes message reaches under T and hop limitation h is M = Nh(T)
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Search on more realistic topologies

Assume uniform mobility characteristics, uniform content distribution
User’s tolerance to waiting: T for each step of the search

# of nodes message reaches under T and hop limitation h is M = Nh(T)

Search success for content with availability & and M replicas maximum:
M
P, = Z Pr{m content providers are discovered }

m=1
x Pr{at least one of m responses reaches n}

Pszl_(l_@V)M where ’Y:%
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Analysis of InfocomO06é trace, 98 nodes
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Neighborhood size
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Analysis of InfocomO06é trace, 98 nodes
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Analysis of InfocomO06é trace, 98 nodes

Vanishing increase: small-world network
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Analysis of InfocomO06é trace, 98 nodes
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Analysis of InfocomO06é trace, 98 nodes
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Analysis of InfocomO06é trace, 98 nodes
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Forward success ratio

Optimal hop vs. fair-benefit hop

/Optimal hop: hop count providing highest
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— Fair-benefit hop: hop count beyond which
performance improvement is “insignificant” (e.g., user
experience does not change significantly)



Forward success ratio

Optimal hop vs. fair-benefit hop
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Effective temporal distance to content

o Networks have different mobility characteristics resulting in different effective temporal/
hop distance to content

o Effective temporal/hop distance to content and from the content: Maximum distance, be
it hops or time, which ensures that 90% of the paths between a searching node and a
content provider is lower than this distance

o ONE simulations of hop-limited search
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Effective temporal distance to content

o Networks have different mobility characteristics resulting in different effective temporal/
hop distance to content

o Effective temporal/hop distance to content and from the content: Maximum distance, be
it hops or time, which ensures that 90% of the paths between a searching node and a
content provider is lower than this distance

o ONE simulations of hop-limited search

o Infocom06 (98 nodes) and Cabspotting (460 cars)
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Operation region

Can we adapt availability, e.g., replicate proactively, to push the

Content availability ) system to high-performance region?

Low hop
count High performance
?
Low Low hop
performance count User’s tolerance May not b.e easy to
» Network’s mobility push to higher-

performance region
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Availability estimation

Content availability

Can we adapt availability, e.g., replicate proactively, to push the
system to high-performance region?

Yes, we can!



Availability estimation

Can we adapt availability, e.g., replicate proactively, to push the
Content availability ) system to high-performance region?

Yes, we can!

Infer the operation region (estimate the availability) first to take an
appropriate action
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Availability

estimation
Estimated content
Signals availability
Incoming messages
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Passive estimation

Signals: number of hops, number of queries, number of content providers
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Uniform interest distribution: every node searches for content c with equal
probability
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Uniform interest distribution: every node searches for content c with equal
probability

Under these assumptions, availability is simply: Query

one over total number of nodes carrying the [ hop count }
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Assumptions

Uniform distribution of content: every node is equally likely to be a provider

Uniform interest distribution: every node searches for content c with equal
probability
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Assumptions

Uniform distribution of content: every node is equally likely to be a provider

Uniform interest distribution: every node searches for content c with equal
probability

: D r
Under these assumptions, availability is simply: Query
one over total number of nodes carrying the [ hop count | # of carriers }

query at the time when the first content provider
is discovered

Response
availability = 1/8 [query-hop content provider}
AN H )
Remember: query replicas follow different OwW many:
query rep ;I\ 000

branches of the distribution tree



Nalve estimation schemes

Query | Q-HC: 1/(hop+1)
[ hop count | # of carriers } Q-NC: 1/(# of carriers +1)

Response R-HC: 1/(hop+1)

[query-hop content provider}

R-CP: # of content providers/
network size




Nalve estimation schemes

Query Q-HC: 1/(hop+1)
[ hop count | # of carriers } Q-NC: 1/(# of carriers +1)

Response R-HC: 1/(hop+1)

[query-hop content provider

R-CP: # of content providers/
network size

Can we have better schemes?



Least-squares (LS) based estimation, Q-LS
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exploit its distribution to find availability
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o knowledge of i-hop neighbors, uniform query
distribution, uniform content distribution




Least-squares (LS) based estimation, Q-LS
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MLE based estimation, Q-ML

(1-p) (1-p) Thinned J
Poisson .

. process
Poisson process Poisson((1 — p)’

M; ~ Poisson(a) Queries satisfied Queries satisfied s
with probability p with probability p

ﬁ)bservation:Thinned Poisson

process
Solve the MLE and find p Assumes:

H z 1) - o knowledge of i-hop neighbors
L = H e~ a(l1-p) o uniform query distribution

i—1 Q uniform content distribution J




PDF

Q-ML vs. Q-LS (dashed lines)

Variability in the MLE Estimate

E[M]=500

0.0
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Estimate for availability

0.4

Assess variability in estimates using
Monte-Carlo simulations, real
availability = 0.2

Q-ML slightly better than Q-LS,
but comes with higher complexity

Remember: we look for simple
solutions, Q-LS
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InfocomQ6: 98 users

o 100 content items, around 3200 queries generated, Zipf availability distribution 0.6,
Weibull popularity distribution with k = 0.513
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Skewed distribution: can schemes detect it?

Rather than availability value, availability group is more useful (e.g., which
content to evict from cache) to know, e.g. content lies at the head or tail
of the distribution.
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Collective estimates (nodes share their estimates)
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Collective estimates (nodes share their estimates)
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0.4

Estimation error
0.2

Accuracy: the tail or the head!?
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0.4

Estimation error
0.2

Accuracy: the tail or the head!?
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Three components of opportunistic search

A better representation of the three
components of search

Users

Wireless connectivity

Social connectivity
Content items

Popularity

Availability
Queries

Spatial and temporal locality

Can we capture all these layers and interactions?
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Summary

Three components of search: content availability, user’s tolerated waiting
time, network mobility (temporal distance to content)

Optimal strategy depends on content availability (distribution) and cost
metric

Availability estimation: passive and naive schemes based on number of
replications, number of content providers, observed queries

Estimation in the wild with more realistic assumptions?

Dependency on number of observations, change in content availability/
popularity (how fast does it change?)

How to exploit this information in a complete search protocol design?
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