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How would one retrieve some content stored in a 
remote mobile device if there is no Google-like 

service and nodes are moving around in the 
network?	
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o  Network of mobile devices with wireless communication interface	

o  Intermittent connections, but mobile nodes, store-carry-forward	

Mobile opportunistic networks�
	

Useful information 
often found locally, 
homophily, spatial 
locality	

Per-bit billing vs.	
almost-free network 
capacity	

No or unreliable 
infrastructure, +50% 
forecasted global 
population will remain 
offline in 2017	

Tight control on 
content and users (e.g., 
censorship, tracking) 	

http://geonet.oii.ox.ac.uk	
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Challenges	

o  Sporadic contacts (delay-tolerant 
applications)	

o  Time-varying network topology	

o  Lack of precise knowledge	

o  Energy-limited devices	

Solutions:	

o  Introduce redundancy, i.e., multi-
copy multi-hop routing protocols	

o  Exploit predictability of human 
contacts (scheduled lives!)	

	

Challenges and solutions	
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•  Ask every one	

•  Epidemic (flooding)	

•  Ask the nodes in the same/similar community	

•  DelQueue: geo-community [Fan 2011], Seeker-assisted search [Bayhan2013]	

•  Ask some nodes based on some criteria	

•  Announced experience [Liu 2014], Random walk	

•  Wait till meeting one of the content providers	

•  Direct delivery [Sermpezis2014]	

•  Do not ask, wait for somebody to deliver!	

•  Push based approach (pub/sub)	

•  Design your own Google! 	

•  Hash-based mapping of content [Talipov 2013]	

	

	

How to find content without Google?	
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Three components of opportunistic search	

User	
Limited tolerance to waiting	
Limited energy	

Content	
Scarce or abundant item	

Network mobility	
Many contacts?	
Many diverse contacts?	

Images from: http://www.onewebcms.com/en/home/default.aspx and http://www.dotherightmix.eu/	
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Message lifetime (TTL) 	
Message hop-limit to bound the 
cost	

Content availability α	 Real traces	
Neighborhood growth	
Temporal distance to 
content	
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Three components of opportunistic search	

User	
Limited tolerance to waiting	
Limited energy	

Content	
Scarce or abundant item	

Network mobility	
Many contacts?	
Many diverse contacts?	

Images from: http://www.onewebcms.com/en/home/default.aspx and http://www.dotherightmix.eu/	

How these components affect the (optimal) search strategy and 
performance (success, delay, cost)?	
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•  Query: Travels to right and a possible response to left (content discovery, forward path)	
•  Response: every link remains available with probability γ (content delivery, return path)	
•  Transmission cost for each link: e	
•  Each discovered content has some value v 	

•  Bernoulli case: a node either has the content, or not with  single availability parameter p  	

	

Optimal search depth in a linear network	
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Optimal search depth in a linear network	

•  Static: Searching node determines the  search depth (number of hops). 
Nodes route the query and response, if any	

•  Dynamic: Each relaying node decides to stop the search or route to the 
next node based on the content availability and the cost	
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Utility = Expected value of content – ( expected cost of forward path
	 	 	 	 	+expected cost of return path) 	

Optimal depth: utility maximization problem	

Depends on 	
•  content availability distribution	
•  # of nodes queried	

•  # of nodes queried	
•  content availability for dynamic schemes	

•  # of nodes queried	
•  Reliability of the return links	
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Stop search when the next node does 
not bring any improvement in utility	

4 E. Hyytiä et al. / Computer Communications 000 (2015) 1–14
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We note that our problem is related to the optimal stopping prob-
lem in the routing at DTNs, see, e.g., [16,24]. However, there is a fun-
damental difference because in our setting there are multiple ways to
“stop”: one can simply stop and give up, or stop and send a response
back to the searching node (which costs more in terms of energy and
time). Moreover, it is possible to send a response while still proceed-
ing further with the search. The search forwarding algorithm must
take all these different options and the earlier observations into ac-
count when making the decisions.

4. Optimal search strategies

In this section, we will analyze the optimal search strategies. First,
we consider static strategies, where the searching node sets at the
time of search admission how many hops the query should go fur-
ther. In other words, the actions of other nodes are already decided
by the searching node, i.e., search and forward the query till the hop
limit is reached. Next, we introduce dynamic strategies, where the
action of each node may depend on what has been found so far, and if
some responses have already been sent. The dynamic strategies may
also learn the value distribution during the search. In the following,
we model these search schemes for two settings. First, we consider
a setting in which a node may have the sought item or not. We call
this as exact-match scenario. Next, we model the content items that
may partially match the search query, i.e., the content may not be the
perfect answer for the search query but provides some relevant infor-
mation. We call this case as partially-match scenario.

4.1. Exact-matching contents: Bernoulli distribution

Let us start with the binary case where a node either has the com-
plete response to the query, or no relevant information at all. That
is, the value of the response from node i obeys Bernoulli distribution
Vi ∼ Bernoulli(p), where p denotes the probability that a node has the
sought content. We refer to p as the content availability, and q denotes
the probability of the opposite case, q = 1 − p. To account for the ef-
fect of mobility on the stability of the links, we let the links on the
return path be unreliable (γ < 1). In our model, at most one response
is sent per query.

4.1.1. Static strategy
Let us assume that nodes are aware of the content availability p. A

static search strategy is defined by a fixed depth n, i.e., each search
will check the first n nodes and then return the highest response
found. Given that each link is up and ready for transmission with
probability γ independent of other links, we calculate the number
of transmissions on the return path as:

rn =
n∑

i=1

iγ i−1(1 − γ ) + nγ n. (2)

Based on γ , we define rn as:

rn =

{
1 − γ n

1 − γ
, when 0 < γ < 1,

n, when γ = 1.
(3)

The total number of transmissions is m = n + rn, and the response
reaches the searching node with probability of γ n. The expected
search result with depth n is

Rn = E[max{V1, ..,Vn}] · γ n

= (0 · qn + 1 · (1 − qn))γ n

= (1 − qn)γ n. (4)

Thus, the expected utility under n hop search is

Un = Rn − (n + rn)e = (1 − qn)γ n − (n + rn)e. (5)

For γ = 1, the response travels the same path as the query and
hence rn = n. This case also provides the upper bound of the search
success for this strategy:

Un = 1 − qn − 2ne. (6)

The optimal static policy is obtained by finding n that maximizes
the expected utility:

n∗ = arg max
n∈N

Un. (7)

We note that this is clearly a non-optimal strategy: if node 1
already has the sought content it is useless to search any further.
Nonetheless, we consider this simple strategy first and later compare
how far it is from the optimal. Below, we provide the optimal hop
count for both the perfectly reliable response links (i.e.,γ = 1) and
lossy response links (i.e.,γ < 1).

• Case γ = 1: Let us first assume the ideal case with γ = 1. Note
that if p < 2e, then the optimal search depth n is zero, i.e., it is
not worth initiating a search at all. The optimal (integer-valued)
search depth n is found by studying the gain from expanding the
search by one step, i.e., "U(n) = Un+1 − Un:

"U(n) =
(
1 − qn+1 − 2(n + 1)e

)
− (1 − qn − 2ne) = pqn − 2e.

The gain becomes negative at the optimal search depth, giving

n∗ =
⌈

log (2e/p)
log q

⌉
. (p > 2e) (8)

• Case 0 < γ < 1: Let us next consider unreliable return paths. The
condition remains the same, i.e., at the optimal depth n we have
Un+1 − Un ≤ 0. Unfortunately, in this case we cannot express n∗ in
closed form. However, we can determine the critical transmission
cost e∗

n,

e∗
n = γ n(qn + γ − γ qn+1 − 1)

1 + γ n

which is the smallest transmission cost for which the optimal
search depth is n∗ = n. Conversely,

n∗ = arg min
n

{n | e∗
n < e}.

The optimal search depth n∗ for γ = 1 is illustrated in Fig. 3(a.i).
In the upper left “triangle”, where p < 2e, we have n∗ = 0, i.e., the
value of the sought information is too low to justify a search. Note
also that when p → 1, i.e., when the content becomes highly available,
the optimal search depth is n∗ = 1for any fixed transmission cost e <

p/2. This is due to the fact that the content is always found at the first
node, and still continuing the search further would just waste energy
and time. Indeed, this inability to dynamically stop the search is the
Achilles heel of all static search strategies.

Fig. 3 (a.ii) depicts the optimal static search depth when the return
path is unreliable and each link backward exists with the probability
of γ = 0.7.

4.1.2. Dynamic strategy
Let us next consider strategies that adjust the search depth dy-

namically as the search progresses. In the Bernoulli case, the obvious
dynamic search strategy searches at most n nodes (the max. depth)
and terminates immediately if the content is found. Hence, e.g., with
the probability of p, the first node has the content and the total num-
ber of transmissions is 2 (out of which, the latter is successful with
probability of γ ). Note that the expected value of the content found
(but not necessarily successfully returned) is the same as with the
static strategy, E[maxi Vi] = 1 − qn. However, the search may termi-
nate earlier, which (i) saves in the number of transmissions and also
(ii) improves the probability of successfully returning a response.

Please cite this article as: E. Hyytiä et al., On search and content availability in opportunistic networks, Computer Communications (2015),

http://dx.doi.org/10.1016/j.comcom.2015.09.011



Static scheme	

higher hop counts 
thanks to the 
capability of stopping 
the search	

conservative most 
of the time	

Dynamic	



Static scheme	

higher hop counts 
thanks to the 
capability of stopping 
the search	

conservative most 
of the time	

Dynamic	

Don’t search if the requested item is scarce or transmission is very 
costly	
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Improvement by dynamic strategy is 
higher for low availability�

	
Nodes should be able to stop or 

forward the search messages!	



Content availability and cost 
determines the optimal search depth	



Content availability and cost 
determines the optimal search depth	

How about the user and more 
realistic settings (general topologies)?	
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•  Assume uniform mobility characteristics,  uniform content distribution	

•  User’s tolerance to waiting:  T for each step of the search	

•  # of nodes message reaches under T and hop limitation h is M = Nh(T)	

	

Search on more realistic topologies	
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Search success for content with availability α and M replicas maximum: 	

4

success ratio as1:

Forward path success ratio ⇡ 1� (1� ↵)M . (1)

Next, we calculate the search success ratio as:

P
s

=

MX

m=1

Pr{m content providers are discovered}

⇥ Pr{at least one of m responses reaches n
s

}.

We can expand the above formulation which leads to:

P
s

=

MX

m=1

✓
M

m

◆
↵m

(1�↵)M�m

✓
1�(1� M 0

N � 1

)

m

◆
.

Let � =

M

0

N�1 , i.e., the probability that a response reaches n
s

.
Then, we can simplify P

s

as:

P
s

= 1� (1� ↵�)M . (2)

Using (1) and (2), we illustrate the success ratio as a
function of allowed message replication, i.e., fraction of nodes
receiving the message, under various ↵ in Fig. 3(a). Before
discussing Fig.3(a), let us revisit our motivating scenario in
Fig. 1. Since n

s

loses interest for the searched information
after some time, it may be more practical to set time limitations
for the forward (T ) and response path (T 0) instead of M and
M 0. From a design perspective, replication can be restricted
by a hop limit, i.e., a message can be forwarded to maximum
h hops. Under time and hop count limitations, an initiated
message can reach at most N

h

(T ) nodes which we refer to
as time-restricted h�hop neighbourhood of a node.2 Hence,
in what follows, we replace M and M 0 in (2) by the related
neighbourhood values N

h

(T ) and N
h

(T 0
), respectively.

A. Response paths are more challenging
From Fig. 3(a), we observe that the search messages have

to spread to a certain number of nodes for a particular content
availability to ensure a given level of search success. The
number of nodes receiving the message denoted by N

h

(T )
depends on node mobility: not only the average inter-contact
time but also how diverse the nodes’ contacts are. For example,
the contact rate may be high, but all contacts are among
each other and new nodes are seldom met. Therefore, N

h

(T )
remains stable over time. Fig. 3(b) plots the cumulative neigh-
bourhood size with increasing h for Infocom 2006 mobility
trace.3 Observation time window and hop limit affect the
neighbourhood. Notice the significant increase in N

h

(T ) at
h = 2 and the vanishing increase after h = 4.

The second parameter ↵ leads us to the following insight.
Given that the response path is a search for a single node, we
can calculate the success of the response path similar to the
success of the forward path where ↵ =

1
N

. This brings us to
the fact that under the same T and h constraints, the response
path attains a lower success ratio. Generally speaking, response

1Please refer to [1] for more details on the derivations.
2As forwarding consumes energy, nodes may not always relay the messages.

This results in lower Nh(T ). However, we assume that all nodes are
cooperative, e.g., with the help of some reward mechanisms as in [8].

3The traces are available at http://crawdad.org/cambridge/haggle/.
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Fig. 3. (a) Search success for various ↵ = {0.05, 0.15, 0.40} and (b)
cumulative neighborhood for Infocom06 for various T , from [1].

path requires more hops or time for completion than forward
path. Note that (2) is derived for a flooding-based scheme
making it hard to generalize to more conservative search
schemes. Nevertheless, it is instrumental to gain insights on
different phases of the search.

B. Optimal search depth depends on content availability and
tolerated search time

To ensure search success to be at least �
min

, how should
we set the hop count limit? From (2), we can derive the
minimum N

h

(T ) by setting P
s

> �
min

. However, it is
nontrivial to model N

h

(T ) as the order of the meetings and
T determine the growth in an opportunistic network. Hence,
we can rely on numerical results similar to Fig. 3, and obtain
the corresponding hop count for a given T and ↵.

Briefly, content availability, user’s tolerance to waiting time
for a response, and mobility are three key factors determining
the search performance. The product �

tot

T represents the total
number of contacts occurring in the duration of the user’s
waiting time where �

tot

is the aggregate contact rate among
all nodes. A search scheme cannot offer much if the network
is limited in mobility and density, i.e., low �

tot

T . If both
↵ and �

tot

T are low representing a scenario where content
is scarce and very few contacts are experienced, the search
performance is expected to be low. However, if the user does
not impose very stringent time requirements or if the content
is abundant in the network, search becomes easier. In such
cases, it is sufficient to have a low hop count limit (e.g., two
or three [1]) to obtain good performance. That is, when ↵�

tot

T
is large relative to the expected number of content providers
met during the search time, limiting the search to a few hops
still achieves good results. As ↵�

tot

T decreases, the required
hop limit to maintain good search performance is larger.

Determining the key factors helps us identify the conditions
leading to low performance and engineer the networks such
that these conditions are avoided. For example, all search
schemes will perform poorly if the user is impatient and
the content is only available at a very few nodes. In such
a case, we may not be able to increase the user’s patience,
but we can increase the content availability by caching or
active replication. Hence, inference on the operation region
is paramount to taking appropriate action.
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h hops. Under time and hop count limitations, an initiated
message can reach at most N

h

(T ) nodes which we refer to
as time-restricted h�hop neighbourhood of a node.2 Hence,
in what follows, we replace M and M 0 in (2) by the related
neighbourhood values N

h

(T ) and N
h

(T 0
), respectively.

A. Response paths are more challenging
From Fig. 3(a), we observe that the search messages have

to spread to a certain number of nodes for a particular content
availability to ensure a given level of search success. The
number of nodes receiving the message denoted by N

h

(T )
depends on node mobility: not only the average inter-contact
time but also how diverse the nodes’ contacts are. For example,
the contact rate may be high, but all contacts are among
each other and new nodes are seldom met. Therefore, N

h

(T )
remains stable over time. Fig. 3(b) plots the cumulative neigh-
bourhood size with increasing h for Infocom 2006 mobility
trace.3 Observation time window and hop limit affect the
neighbourhood. Notice the significant increase in N

h

(T ) at
h = 2 and the vanishing increase after h = 4.

The second parameter ↵ leads us to the following insight.
Given that the response path is a search for a single node, we
can calculate the success of the response path similar to the
success of the forward path where ↵ =

1
N

. This brings us to
the fact that under the same T and h constraints, the response
path attains a lower success ratio. Generally speaking, response

1Please refer to [1] for more details on the derivations.
2As forwarding consumes energy, nodes may not always relay the messages.

This results in lower Nh(T ). However, we assume that all nodes are
cooperative, e.g., with the help of some reward mechanisms as in [8].

3The traces are available at http://crawdad.org/cambridge/haggle/.

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Frac.of nodes receiving msg., K/(N−1)

S
u

cc
e

ss
 r

a
tio

, 
P

s

0.05 0.24 0.42 0.61 0.79 0.98

Forward, 0.05
Forward, 0.15
Forward, 0.4
Complete search, 0.05
Complete search, 0.15
Complete search, 0.4

(a) Search success, N = 98.

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

Hop count limitation (h)

N
e
ig

h
b
o
rh

o
o
d
 s

iz
e

1 2 3 4 5 6 7 8 9 10

T=600 s
T=2600 s
T=4600 s
T=6600 s

(b) Infocom06 trace, N = 98.

Fig. 3. (a) Search success for various ↵ = {0.05, 0.15, 0.40} and (b)
cumulative neighborhood for Infocom06 for various T , from [1].

path requires more hops or time for completion than forward
path. Note that (2) is derived for a flooding-based scheme
making it hard to generalize to more conservative search
schemes. Nevertheless, it is instrumental to gain insights on
different phases of the search.

B. Optimal search depth depends on content availability and
tolerated search time

To ensure search success to be at least �
min

, how should
we set the hop count limit? From (2), we can derive the
minimum N

h

(T ) by setting P
s

> �
min

. However, it is
nontrivial to model N

h

(T ) as the order of the meetings and
T determine the growth in an opportunistic network. Hence,
we can rely on numerical results similar to Fig. 3, and obtain
the corresponding hop count for a given T and ↵.

Briefly, content availability, user’s tolerance to waiting time
for a response, and mobility are three key factors determining
the search performance. The product �

tot

T represents the total
number of contacts occurring in the duration of the user’s
waiting time where �

tot

is the aggregate contact rate among
all nodes. A search scheme cannot offer much if the network
is limited in mobility and density, i.e., low �

tot

T . If both
↵ and �

tot

T are low representing a scenario where content
is scarce and very few contacts are experienced, the search
performance is expected to be low. However, if the user does
not impose very stringent time requirements or if the content
is abundant in the network, search becomes easier. In such
cases, it is sufficient to have a low hop count limit (e.g., two
or three [1]) to obtain good performance. That is, when ↵�

tot

T
is large relative to the expected number of content providers
met during the search time, limiting the search to a few hops
still achieves good results. As ↵�

tot

T decreases, the required
hop limit to maintain good search performance is larger.

Determining the key factors helps us identify the conditions
leading to low performance and engineer the networks such
that these conditions are avoided. For example, all search
schemes will perform poorly if the user is impatient and
the content is only available at a very few nodes. In such
a case, we may not be able to increase the user’s patience,
but we can increase the content availability by caching or
active replication. Hence, inference on the operation region
is paramount to taking appropriate action.
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success ratio as1:

Forward path success ratio ⇡ 1� (1� ↵)M . (1)

Next, we calculate the search success ratio as:
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.
Then, we can simplify P

s

as:

P
s

= 1� (1� ↵�)M . (2)

Using (1) and (2), we illustrate the success ratio as a
function of allowed message replication, i.e., fraction of nodes
receiving the message, under various ↵ in Fig. 3(a). Before
discussing Fig.3(a), let us revisit our motivating scenario in
Fig. 1. Since n

s

loses interest for the searched information
after some time, it may be more practical to set time limitations
for the forward (T ) and response path (T 0) instead of M and
M 0. From a design perspective, replication can be restricted
by a hop limit, i.e., a message can be forwarded to maximum
h hops. Under time and hop count limitations, an initiated
message can reach at most N

h

(T ) nodes which we refer to
as time-restricted h�hop neighbourhood of a node.2 Hence,
in what follows, we replace M and M 0 in (2) by the related
neighbourhood values N

h

(T ) and N
h

(T 0
), respectively.

A. Response paths are more challenging
From Fig. 3(a), we observe that the search messages have

to spread to a certain number of nodes for a particular content
availability to ensure a given level of search success. The
number of nodes receiving the message denoted by N

h

(T )
depends on node mobility: not only the average inter-contact
time but also how diverse the nodes’ contacts are. For example,
the contact rate may be high, but all contacts are among
each other and new nodes are seldom met. Therefore, N

h

(T )
remains stable over time. Fig. 3(b) plots the cumulative neigh-
bourhood size with increasing h for Infocom 2006 mobility
trace.3 Observation time window and hop limit affect the
neighbourhood. Notice the significant increase in N

h

(T ) at
h = 2 and the vanishing increase after h = 4.

The second parameter ↵ leads us to the following insight.
Given that the response path is a search for a single node, we
can calculate the success of the response path similar to the
success of the forward path where ↵ =

1
N

. This brings us to
the fact that under the same T and h constraints, the response
path attains a lower success ratio. Generally speaking, response

1Please refer to [1] for more details on the derivations.
2As forwarding consumes energy, nodes may not always relay the messages.

This results in lower Nh(T ). However, we assume that all nodes are
cooperative, e.g., with the help of some reward mechanisms as in [8].

3The traces are available at http://crawdad.org/cambridge/haggle/.
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Fig. 3. (a) Search success for various ↵ = {0.05, 0.15, 0.40} and (b)
cumulative neighborhood for Infocom06 for various T , from [1].

path requires more hops or time for completion than forward
path. Note that (2) is derived for a flooding-based scheme
making it hard to generalize to more conservative search
schemes. Nevertheless, it is instrumental to gain insights on
different phases of the search.

B. Optimal search depth depends on content availability and
tolerated search time

To ensure search success to be at least �
min

, how should
we set the hop count limit? From (2), we can derive the
minimum N

h

(T ) by setting P
s

> �
min

. However, it is
nontrivial to model N

h

(T ) as the order of the meetings and
T determine the growth in an opportunistic network. Hence,
we can rely on numerical results similar to Fig. 3, and obtain
the corresponding hop count for a given T and ↵.

Briefly, content availability, user’s tolerance to waiting time
for a response, and mobility are three key factors determining
the search performance. The product �

tot

T represents the total
number of contacts occurring in the duration of the user’s
waiting time where �

tot

is the aggregate contact rate among
all nodes. A search scheme cannot offer much if the network
is limited in mobility and density, i.e., low �

tot

T . If both
↵ and �

tot

T are low representing a scenario where content
is scarce and very few contacts are experienced, the search
performance is expected to be low. However, if the user does
not impose very stringent time requirements or if the content
is abundant in the network, search becomes easier. In such
cases, it is sufficient to have a low hop count limit (e.g., two
or three [1]) to obtain good performance. That is, when ↵�

tot

T
is large relative to the expected number of content providers
met during the search time, limiting the search to a few hops
still achieves good results. As ↵�

tot

T decreases, the required
hop limit to maintain good search performance is larger.

Determining the key factors helps us identify the conditions
leading to low performance and engineer the networks such
that these conditions are avoided. For example, all search
schemes will perform poorly if the user is impatient and
the content is only available at a very few nodes. In such
a case, we may not be able to increase the user’s patience,
but we can increase the content availability by caching or
active replication. Hence, inference on the operation region
is paramount to taking appropriate action.
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success ratio as1:

Forward path success ratio ⇡ 1� (1� ↵)M . (1)

Next, we calculate the search success ratio as:

P
s

=

MX

m=1

Pr{m content providers are discovered}

⇥ Pr{at least one of m responses reaches n
s

}.

We can expand the above formulation which leads to:
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Let � =
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0

N�1 , i.e., the probability that a response reaches n
s

.
Then, we can simplify P

s

as:

P
s

= 1� (1� ↵�)M . (2)

Using (1) and (2), we illustrate the success ratio as a
function of allowed message replication, i.e., fraction of nodes
receiving the message, under various ↵ in Fig. 3(a). Before
discussing Fig.3(a), let us revisit our motivating scenario in
Fig. 1. Since n

s

loses interest for the searched information
after some time, it may be more practical to set time limitations
for forward (T ) and response path (T 0) instead of M and M 0.
From the design perspective, replication can be restricted by
a hop limit, i.e., a message can be forwarded to maximum
h hops. Under time and hop count limitations, an initiated
message can reach at most N

h

(T ) nodes which we refer to
as time restricted h�hop neighbourhood of a node.2 Hence,
in what follows, we replace M and M 0 in (2) by the related
neighbourhood values N

h

(T ) and N
h

(T 0
), respectively.

A. Response paths are more challenging
From Fig. 3(a), we observe that search messages have to

spread to a certain number of nodes for a particular content
availability to ensure a given level of search success. The
number of nodes receiving the message denoted by N

h

(T )
depends on node mobility: not only the average inter-contact
time but also how diverse the nodes’ contacts are. For example,
contact rate may be high, but all contacts are among each other
and new nodes are seldom met. Therefore, N

h

(T ) remains
stable over time. Fig. 3(b) plots the cumulative neighbourhood
size with increasing h for Infocom 2006 mobility trace.3
Observation time window and hop limit affect neighbourhood.
Notice the significant increase in N

h

(T ) at h = 2 and the
vanishing increase after h = 4.

The second parameter ↵ leads us to the following insight.
Given that the response path is a search for a single node,
we can calculate the success of the response path similar
to success of the forward path where ↵ =

1
N

. This brings
us to the fact that under the same T and h constraints, the
response path attains lower success ratio. Generally speaking,

1Please refer to [1] for more details on the derivations.
2As forwarding consumes energy, nodes may not always help spreading the

messages. This results in lower Nh(T ). However, we assume that all nodes
are cooperative, e.g., by the help of some reward mechanisms as in [8].

3The traces are available at http://crawdad.org/cambridge/haggle/.
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Fig. 3. (a) Search success for various content availabilities ↵ =
{0.05, 0.15, 0.40} and (b) cumulative neighborhood for Infocom06 for vari-
ous time durations T , from [1].

response path requires more hops or time for completion
compared to forward path. Note that (2) is derived for a
flooding-based scheme making it hard to generalize to more
conservative search schemes. Nevertheless, it is instrumental
to gain insights on different phases of the search.

B. Optimal search depth depends on content availability and
tolerated search time

To ensure search success to be at least �
min

, how should
we set the hop count limit? From (2), we can derive the
minimum N

h

(T ) by setting P
s

> �
min

. However, it is
nontrivial to model N

h

(T ) as the order of the meetings and
T determine the growth in an opportunistic network. Hence,
we can rely on numerical results similar to Fig. 3, and obtain
the corresponding hop count for a given T and ↵.

Briefly, content availability, user’s tolerance to waiting time
for a response, and mobility are three key factors determining
the search performance. The product �

tot

T represents the total
number of contacts occurring in the duration of the user’s
waiting time where �

tot

is the aggregate contact rate among
all nodes. A search scheme cannot offer much if the network is
limited in mobility and density, i.e., low �

tot

T . If both ↵ and
�
tot

T are low representing a scenario where content is scarce
and very few contacts are experienced, search performance is
expected to be low. However, if the user does not impose very
stringent time requirements or if the content is abundant in the
network, search becomes easier. In such cases, it is sufficient
to have a low hop count limit (e.g., two or three [1]) to obtain
good performance. That is, when ↵�

tot

T is large relative
to the expected number of content providers met during the
search time, limiting the search to a few hops still achieves
good results. As ↵�

tot

T decreases, the required hop limit to
maintain good search performance is larger.

Determining the key factors helps us identify the conditions
leading to low performance and engineer the networks such
that these conditions are avoided. For example, all search
schemes will perform poorly if the user is impatient and
the content is only available at a very few nodes. In such
a case, we may not be able to increase user’s patience,
but we can increase the content availability by caching or
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success ratio as1:

Forward path success ratio ⇡ 1� (1� ↵)M . (1)

Next, we calculate the search success ratio as:

P
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=

MX

m=1

Pr{m content providers are discovered}

⇥ Pr{at least one of m responses reaches n
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}.

We can expand the above formulation which leads to:
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N�1 , i.e., the probability that a response reaches n
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.
Then, we can simplify P
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as:

P
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= 1� (1� ↵�)M . (2)

Using (1) and (2), we illustrate the success ratio as a
function of allowed message replication, i.e., fraction of nodes
receiving the message, under various ↵ in Fig. 3(a). Before
discussing Fig.3(a), let us revisit our motivating scenario in
Fig. 1. Since n

s

loses interest for the searched information
after some time, it may be more practical to set time limitations
for forward (T ) and response path (T 0) instead of M and M 0.
From the design perspective, replication can be restricted by
a hop limit, i.e., a message can be forwarded to maximum
h hops. Under time and hop count limitations, an initiated
message can reach at most N

h

(T ) nodes which we refer to
as time restricted h�hop neighbourhood of a node.2 Hence,
in what follows, we replace M and M 0 in (2) by the related
neighbourhood values N

h

(T ) and N
h

(T 0
), respectively.

A. Response paths are more challenging
From Fig. 3(a), we observe that search messages have to

spread to a certain number of nodes for a particular content
availability to ensure a given level of search success. The
number of nodes receiving the message denoted by N

h

(T )
depends on node mobility: not only the average inter-contact
time but also how diverse the nodes’ contacts are. For example,
contact rate may be high, but all contacts are among each other
and new nodes are seldom met. Therefore, N

h

(T ) remains
stable over time. Fig. 3(b) plots the cumulative neighbourhood
size with increasing h for Infocom 2006 mobility trace.3
Observation time window and hop limit affect neighbourhood.
Notice the significant increase in N

h

(T ) at h = 2 and the
vanishing increase after h = 4.

The second parameter ↵ leads us to the following insight.
Given that the response path is a search for a single node,
we can calculate the success of the response path similar
to success of the forward path where ↵ =

1
N

. This brings
us to the fact that under the same T and h constraints, the
response path attains lower success ratio. Generally speaking,

1Please refer to [1] for more details on the derivations.
2As forwarding consumes energy, nodes may not always help spreading the

messages. This results in lower Nh(T ). However, we assume that all nodes
are cooperative, e.g., by the help of some reward mechanisms as in [8].

3The traces are available at http://crawdad.org/cambridge/haggle/.
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Fig. 3. (a) Search success for various content availabilities ↵ =
{0.05, 0.15, 0.40} and (b) cumulative neighborhood for Infocom06 for vari-
ous time durations T , from [1].

response path requires more hops or time for completion
compared to forward path. Note that (2) is derived for a
flooding-based scheme making it hard to generalize to more
conservative search schemes. Nevertheless, it is instrumental
to gain insights on different phases of the search.

B. Optimal search depth depends on content availability and
tolerated search time

To ensure search success to be at least �
min

, how should
we set the hop count limit? From (2), we can derive the
minimum N

h

(T ) by setting P
s

> �
min

. However, it is
nontrivial to model N

h

(T ) as the order of the meetings and
T determine the growth in an opportunistic network. Hence,
we can rely on numerical results similar to Fig. 3, and obtain
the corresponding hop count for a given T and ↵.

Briefly, content availability, user’s tolerance to waiting time
for a response, and mobility are three key factors determining
the search performance. The product �

tot

T represents the total
number of contacts occurring in the duration of the user’s
waiting time where �

tot

is the aggregate contact rate among
all nodes. A search scheme cannot offer much if the network is
limited in mobility and density, i.e., low �

tot

T . If both ↵ and
�
tot

T are low representing a scenario where content is scarce
and very few contacts are experienced, search performance is
expected to be low. However, if the user does not impose very
stringent time requirements or if the content is abundant in the
network, search becomes easier. In such cases, it is sufficient
to have a low hop count limit (e.g., two or three [1]) to obtain
good performance. That is, when ↵�

tot

T is large relative
to the expected number of content providers met during the
search time, limiting the search to a few hops still achieves
good results. As ↵�

tot

T decreases, the required hop limit to
maintain good search performance is larger.

Determining the key factors helps us identify the conditions
leading to low performance and engineer the networks such
that these conditions are avoided. For example, all search
schemes will perform poorly if the user is impatient and
the content is only available at a very few nodes. In such
a case, we may not be able to increase user’s patience,
but we can increase the content availability by caching or
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success ratio as1:

Forward path success ratio ⇡ 1� (1� ↵)M . (1)

Next, we calculate the search success ratio as:

P
s

=

MX
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N�1 , i.e., the probability that a response reaches n
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.
Then, we can simplify P
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as:

P
s

= 1� (1� ↵�)M . (2)

Using (1) and (2), we illustrate the success ratio as a
function of allowed message replication, i.e., fraction of nodes
receiving the message, under various ↵ in Fig. 3(a). Before
discussing Fig.3(a), let us revisit our motivating scenario in
Fig. 1. Since n

s

loses interest for the searched information
after some time, it may be more practical to set time limitations
for forward (T ) and response path (T 0) instead of M and M 0.
From the design perspective, replication can be restricted by
a hop limit, i.e., a message can be forwarded to maximum
h hops. Under time and hop count limitations, an initiated
message can reach at most N

h

(T ) nodes which we refer to
as time restricted h�hop neighbourhood of a node.2 Hence,
in what follows, we replace M and M 0 in (2) by the related
neighbourhood values N

h

(T ) and N
h

(T 0
), respectively.

A. Response paths are more challenging
From Fig. 3(a), we observe that search messages have to

spread to a certain number of nodes for a particular content
availability to ensure a given level of search success. The
number of nodes receiving the message denoted by N

h

(T )
depends on node mobility: not only the average inter-contact
time but also how diverse the nodes’ contacts are. For example,
contact rate may be high, but all contacts are among each other
and new nodes are seldom met. Therefore, N

h

(T ) remains
stable over time. Fig. 3(b) plots the cumulative neighbourhood
size with increasing h for Infocom 2006 mobility trace.3
Observation time window and hop limit affect neighbourhood.
Notice the significant increase in N

h

(T ) at h = 2 and the
vanishing increase after h = 4.

The second parameter ↵ leads us to the following insight.
Given that the response path is a search for a single node,
we can calculate the success of the response path similar
to success of the forward path where ↵ =

1
N

. This brings
us to the fact that under the same T and h constraints, the
response path attains lower success ratio. Generally speaking,

1Please refer to [1] for more details on the derivations.
2As forwarding consumes energy, nodes may not always help spreading the

messages. This results in lower Nh(T ). However, we assume that all nodes
are cooperative, e.g., by the help of some reward mechanisms as in [8].

3The traces are available at http://crawdad.org/cambridge/haggle/.
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Fig. 3. (a) Search success for various content availabilities ↵ =
{0.05, 0.15, 0.40} and (b) cumulative neighborhood for Infocom06 for vari-
ous time durations T , from [1].

response path requires more hops or time for completion
compared to forward path. Note that (2) is derived for a
flooding-based scheme making it hard to generalize to more
conservative search schemes. Nevertheless, it is instrumental
to gain insights on different phases of the search.

B. Optimal search depth depends on content availability and
tolerated search time

To ensure search success to be at least �
min

, how should
we set the hop count limit? From (2), we can derive the
minimum N

h

(T ) by setting P
s

> �
min

. However, it is
nontrivial to model N

h

(T ) as the order of the meetings and
T determine the growth in an opportunistic network. Hence,
we can rely on numerical results similar to Fig. 3, and obtain
the corresponding hop count for a given T and ↵.

Briefly, content availability, user’s tolerance to waiting time
for a response, and mobility are three key factors determining
the search performance. The product �

tot

T represents the total
number of contacts occurring in the duration of the user’s
waiting time where �

tot

is the aggregate contact rate among
all nodes. A search scheme cannot offer much if the network is
limited in mobility and density, i.e., low �

tot

T . If both ↵ and
�
tot

T are low representing a scenario where content is scarce
and very few contacts are experienced, search performance is
expected to be low. However, if the user does not impose very
stringent time requirements or if the content is abundant in the
network, search becomes easier. In such cases, it is sufficient
to have a low hop count limit (e.g., two or three [1]) to obtain
good performance. That is, when ↵�

tot

T is large relative
to the expected number of content providers met during the
search time, limiting the search to a few hops still achieves
good results. As ↵�

tot

T decreases, the required hop limit to
maintain good search performance is larger.

Determining the key factors helps us identify the conditions
leading to low performance and engineer the networks such
that these conditions are avoided. For example, all search
schemes will perform poorly if the user is impatient and
the content is only available at a very few nodes. In such
a case, we may not be able to increase user’s patience,
but we can increase the content availability by caching or
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Vanishing increase: small-world network	
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Analysis of Infocom06 trace, 98 nodes	

Low content availability, %5 availability	

Short  T, 10 mins	

Second hop brings the 
highest improvement	

Search for scarce item 
benefits significantly 
from multi-hop search	
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experience does not change significantly)	
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Optimal hop vs. fair-benefit hop	

Optimal hop: hop count providing highest 
possible performance	

Fair-benefit hop: hop count beyond which 
performance improvement is “insignificant” (e.g., user 
experience does not change significantly)	

Lower hop count for increasing T, increasing availability à shrinking network 
diameter	
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Effective temporal distance to content	
o  Networks have different mobility characteristics resulting in different effective temporal/

hop distance to content 	
o  Effective temporal/hop distance to content and from the content:  Maximum distance, be 

it hops or time, which ensures that 90% of the paths between a searching node and a 
content provider is lower than this distance 	

o  ONE simulations of hop-limited search	
o  Infocom06 (98 nodes) and Cabspotting (460 cars)	
	

o  Higher performance due to 
Capspotting trace having lower 
temporal distance to content.	

o  Low availability:  15 mins vs 4 hours 
under flooding-search	
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Can we adapt availability, e.g., replicate proactively, to push the 
system to high-performance region?	
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Content availability	

Availability estimation	

Can we adapt availability, e.g., replicate proactively, to push the 
system to high-performance region?	
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Content availability	

Availability estimation	

Can we adapt availability, e.g., replicate proactively, to push the 
system to high-performance region?	

Yes, we can!	

Infer the operation region (estimate the availability) first to take an 
appropriate action	
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Signals: number of hops, number of queries, number of content providers  	
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Dynamic 
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Availability 
estimation	
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Estimated content 	

availability	

Query	 Response	

Passive estimation	
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1.  Uniform distribution of content: every node is equally likely to be a provider	

2.  Uniform interest distribution: every node searches for content c with equal 
probability	

Assumptions	

Query	

hop count	 # of carriers	

Response	

query-hop	 content provider	

Under these assumptions, availability is simply:	
one over total number of nodes carrying the 
query at the time when the first content provider 
is discovered	

availability = 1/8	

Remember: query replicas follow different 
branches of the distribution tree	

How many?	



o  Q-HC: 1/(hop+1) 
o  Q-NC: 1/(# of carriers +1) 

Naïve estimation schemes	
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o  Q-HC: 1/(hop+1) 
o  Q-NC: 1/(# of carriers +1) 

Naïve estimation schemes	

o  R-HC: 1/(hop+1) 
o  R-CP: # of content providers/

network size	

Query	

hop count	 # of carriers	

Response	

query-hop	 content provider	

Can we have better schemes?	



57 

Least-squares (LS) based estimation, Q-LS	
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Least-squares (LS) based estimation, Q-LS	

Total # of queries 
generated	
from i-hop neighbors: 
Mi	

Queries satisfied 
with probability p	
2-hop neighbors	

Queries satisfied 
with probability p	
1-hop neighbors	

2) = 0.33; the second as 1/(2 + 2) = 0.25; and so on. Consequently, this method may
(initially) lead to optimistic estimation of p̂, i.e., p̂ > p.

Additionally, considering more general network topologies, the nodes can receive mul-
tiple queries for the same content from diverse paths. Queries following di↵erent paths
result in di↵erent estimations about the availability. Nodes can exploit the diversity in the
message hop counts to have more reliable estimates without any extra transmissions.

Compared to information a query carries, a response message may be more informative:
it carries information about the content provider as well as the content availability observed
by the content provider. In a response-hop count based estimation, the content provider
adds a field to the response message that shows the number of hops the query travelled
till reaching this content provider. Each node on the response path records the number
of response messages it has relayed with a specific hop count. Let Rh denote the number
of response messages a node has observed (of the given content) that were generated by
a content provider who was h hops away from the searching node. Let us denote the
observations of the node by vector R = [Rh]. Using this vector, the node calculates its
estimate for the availability as follows:

p̂ =

PH
h=1

Rh/hPH
h=1

Rh

, (18)

where H is the maximum number of the hop counts the node observes from the response
messages. The space complexity of this approach is H ⇥ M (per node), where M is the
number of contents (or content types). We refer to this approach as R-HC as it relies
on the response messages, more particularly hop counts of the queries associated with the
response message.

5.3. Regression based estimation of availability (Q-LS)

In this section, we derive a rather sophisticated method to estimate the availability from
query messages. Suppose that a node has recorded all (matching) queries that have passed
through it. Unlike in earlier schemes, here we neglect the responses as their frequency
depends highly on the availability and also on the � parameter. Moreover, in practice the
return path may not be the same as the forward path, and therefore a node may see only
a fraction of responses for the queries that it has forwarded.

What a node then can deduce from the number of queries it has observed? We recall
that it does not see a query (i) if it does not belong to the presumed route of the query, or
(ii) if any node earlier along the route had the sought content and sent a response back.
Consequently, it is less likely for a query to reach a given node further it comes from. Our
approach utilizes this property in a novel way to estimate the content availability.

In particular, here we assume that the information available is a sample vector n =
(n

1

, . . . , nH) from a random vector (N
1

, . . . , NH), where ni and Ni denote the number of
queries observed that have travelled i hops before reaching a given node. We note that,
intuitively, if the availability is high, then nH should be small when compared to n

1

, i.e.,
{ni} is likely to be a decreasing sequence if integer numbers. Specifically, E[Ni] > E[Ni+1

].
The key idea is to utilize the di↵erences in the ni to estimate the availability.

To this end, we need to make some further assumptions. First, we let random number
Mi denote the total number of queries that would have reached a given node after i
hops if a matching content did not exist in their paths. We assume that each of the Mi

17

(1-p) (1-p) 
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Least-squares (LS) based estimation, Q-LS	
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that it does not see a query (i) if it does not belong to the presumed route of the query, or
(ii) if any node earlier along the route had the sought content and sent a response back.
Consequently, it is less likely for a query to reach a given node further it comes from. Our
approach utilizes this property in a novel way to estimate the content availability.
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from i-hop neighbors: 
Mi	

Queries satisfied 
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2-hop neighbors	
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1-hop neighbors	
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Key idea: {ni} should be a decreasing sequence, 
exploit its distribution to find availability	
	
Assumes:	
o  knowledge of i-hop neighbors, uniform query 

distribution, uniform content distribution	

queries reaches the given node, independently of the other queries, with the probability of
(1� p)i�1, where p is the availability of the given content type. Hence,

E[Ni] = (1� p)i�1E[Mi],

and therefore we have an obvious estimator for E[Mi],

m̂i =
ni

(1� p)i�1

.

However, we do not know p and actually want to estimate it based on our observations.
To this end, we next assume an uniform source distribution,3 i.e.,

Mi ⇠ M, (19)

so that we can write

log(E[Ni])| {z }
=yi

= (i� 1) log(1� p)| {z }
=b(i�1)

+ log(E[M ])| {z }
=c

,

which gives us a linear model, yi ⇡ b(i � 1) + c. Proceeding with the method of least-
squares-fit, we write

e =
HX

i=1

(yi � b(i� 1)� c)2,

where yi = log ni (assuming ni > 0). Taking the partial derivatives with respect to
parameters b and c yields a system of linear equations,

8
><

>:

@e

@b
= 0,

@e

@c
= 0.

This system can be solved in straightforward fashion, which gives, after some manipulation,
an explicit expression for parameter b = log(1� p),

b =
6
PH

i=1

(2i�H � 1)yi
H(H2 � 1)

.

Our estimate, based on the past observations n, for the availability p is then

p̂ = 1� eb = 1�
HY

i=1

n

⇣
6(2i�H�1)

H(H2�1)

⌘

i . (20)

We note that in above we have not imposed any constraints on the value of b, and therefore
p̂ can give infeasible values (less than zero, or greater than one). In such cases, the size of
the sample set is either too small, or some of our assumptions, such as (19), simply does
not hold. We will return this question later in Section 6. We refer to this approach as
Q-LS as it relies on the query messages and uses least-squares regression for estimation.

3This assumption can be relaxed and adjusted if there is some a priori information about the topology
and the distribution of the Mi. In Section 6.1, we provide some discussion on the distribution of Mi for
real world networks.
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MLE based estimation, Q-ML	
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with probability p	

Queries satisfied 
with probability p	
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Observation: Thinned Poisson 
process	
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o  knowledge of i-hop neighbors	
o  uniform query distribution	
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Figure 6: Regression based approach builds on the vanishing number of queries from n hops away (a), and
its quality improves significantly as the number of observed queries increases (b).

Figure 6(a) illustrates the regression based estimation method. We have obtained a
sample vector n of queries 1, . . . , 6 hops away from a given node. The node fits the model
parameters to the data using (20) and obtains an estimate for the availability p̂ = 0.206,
when the correct value would have been p = 0.2. For this example, we assumed that the
Mi ⇠ Poisson(m) with m = 50.

Figure 6(b) illustrates the variability in the estimate for m 2 {10, 50, 500}. The x-
axis corresponds to the value of the estimate p̂ and the y-axis is the probability density.
We can see that the quality of the estimate is already reasonable when m = 50, but as
more samples become available (m = 500), the error margin becomes negligible (for our
purposes).

5.4. Maximum-likelihood estimate for availability (Q-ML)

Let us next consider the maximum-likelihood estimate for the availability in the same
setting, i.e., we again focus on a certain content type and the aim is to find the probability
that a random node has a content matching a query of the given type (say, sport results).
To this end, we assume similarly as in the previous section that

1. The number of queries originating from i hops away obeys a Poisson distribution,
Mi ⇠ Poisson(a), where a is an unknown parameter related to the rate of queries.
(to be exact, a = �t, where � is the rate and t corresponds to the time-interval).

2. The number of observed queries corresponds to a thinned Poisson process, Ni ⇠
Poisson((1� p)i�1a).

3. The number of queries originating from di↵erent distances are independent, i.e., Mi

and Mj are independent for i 6= j.

In other words, we assume that the mobile users have a common query rate �, but they
behave independently, which is a fair and common assumption (cf. telephone calls, web-
sessions, etc.). With these, the likelihood function is

L =
HY

i=1

�
a(1� p)i�1

�ni

ni!
e�a(1�p)i�1

,
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Figure 6(a) illustrates the regression based estimation method. We have obtained a
sample vector n of queries 1, . . . , 6 hops away from a given node. The node fits the model
parameters to the data using (20) and obtains an estimate for the availability p̂ = 0.206,
when the correct value would have been p = 0.2. For this example, we assumed that the
Mi ⇠ Poisson(m) with m = 50.

Figure 6(b) illustrates the variability in the estimate for m 2 {10, 50, 500}. The x-
axis corresponds to the value of the estimate p̂ and the y-axis is the probability density.
We can see that the quality of the estimate is already reasonable when m = 50, but as
more samples become available (m = 500), the error margin becomes negligible (for our
purposes).

5.4. Maximum-likelihood estimate for availability (Q-ML)

Let us next consider the maximum-likelihood estimate for the availability in the same
setting, i.e., we again focus on a certain content type and the aim is to find the probability
that a random node has a content matching a query of the given type (say, sport results).
To this end, we assume similarly as in the previous section that

1. The number of queries originating from i hops away obeys a Poisson distribution,
Mi ⇠ Poisson(a), where a is an unknown parameter related to the rate of queries.
(to be exact, a = �t, where � is the rate and t corresponds to the time-interval).

2. The number of observed queries corresponds to a thinned Poisson process, Ni ⇠
Poisson((1� p)i�1a).

3. The number of queries originating from di↵erent distances are independent, i.e., Mi

and Mj are independent for i 6= j.

In other words, we assume that the mobile users have a common query rate �, but they
behave independently, which is a fair and common assumption (cf. telephone calls, web-
sessions, etc.). With these, the likelihood function is
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Assess variability in estimates using 
Monte-Carlo simulations, real 
availability = 0.2	

	

Q-ML slightly better than Q-LS, 
but comes with higher complexity	

	

Remember: we look for simple 
solutions, Q-LS	

Q-ML vs. Q-LS (dashed lines)	
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Infocom06: 98 users	
o  100 content items, around 3200 queries generated, Zipf availability distribution 0.6, 

Weibull popularity distribution with k = 0.513	
o  Error = Estimated availability – Real availability	
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Infocom06: 98 users	
o  100 content items, around 3200 queries generated, Zipf availability distribution 0.6, 

Weibull popularity distribution with k = 0.513	
o  Error = Estimated availability – Real availability	

Under-estimation	
R-CP: Not-all content 	
providers can be 
discovered	
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Infocom06: 98 users	
o  100 content items, around 3200 queries generated, Zipf availability distribution 0.6, 

Weibull popularity distribution with k = 0.513	
o  Error = Estimated availability – Real availability	

Under-estimation	
R-CP: Not-all content 	
providers can be 
discovered	

Over-estimation	
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Infocom06: 98 users	
o  100 content items, around 3200 queries generated, Zipf availability distribution 0.6, 

Weibull popularity distribution with k = 0.513	
o  Error = Estimated availability – Real availability	
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Infocom06: 98 users	
o  100 content items, around 3200 queries generated, Zipf availability distribution 0.6, 

Weibull popularity distribution with k = 0.513	
o  Error = Estimated availability – Real availability	
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R-CP: Not-all content 	
providers can be 
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Not surprisingly, hop-based schemes 
overestimate	
Small-world networks 	
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Infocom06: 98 users	
o  100 content items, around 3200 queries generated, Zipf availability distribution 0.6, 

Weibull popularity distribution with k = 0.513	
o  Error = Estimated availability – Real availability	

Under-estimation	
R-CP: Not-all content 	
providers can be 
discovered	
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Similar 
performance	
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o  Rather than availability value, availability group is more useful (e.g., which 
content to evict from cache) to know, e.g. content lies at the head or tail 
of the distribution.	

Skewed distribution:  can schemes detect it? 	
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o  Rather than availability value, availability group is more useful (e.g., which 
content to evict from cache) to know, e.g. content lies at the head or tail 
of the distribution.	

Skewed distribution:  can schemes detect it? 	
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R-CP quite successful in catching the skew	
Not a big difference among nodes	
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Collective estimates (nodes share their estimates)	
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Collective estimates (nodes share their estimates)	
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Small world!	
Query paths 
are short	

R-CP and Q-LS 
can observe the 
skewness	
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Accuracy: the tail or the head?	
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Accuracy: the tail or the head?	
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Lower accuracy at the head. 	
Available content: discovered easily, 
inaccurate estimation may not affect 
performance but may lead to resource 
inefficiency.	

Lower variation 
among nodes	
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A better representation of the three 
components of search	
	
1.  Users	

1.  Wireless connectivity	
2.  Social connectivity	

2.  Content items	
1.  Popularity	
2.  Availability	

3.  Queries	
4.  Spatial and temporal locality	

Three components of opportunistic search	

Can we capture all these layers and interactions?	
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•  Three components of search: content availability, user’s tolerated waiting 
time, network mobility (temporal distance to content)	

•  Optimal strategy depends on content availability (distribution) and cost 
metric	

•  Availability estimation: passive and naïve schemes based on number of 
replications, number of content providers, observed queries	

•  Estimation in the wild with more realistic assumptions?	

•  Dependency on number of observations, change in content availability/
popularity (how fast does it change?)	

•  How to exploit this information in a complete search protocol design?	

	

Summary	



Thanks�
�

http://www.netlab.tkk.fi/tutkimus/pdp/�
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Estimation schemes 	

Actively collect 
information	

Use existing information	
 or minimal exchange	


