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Briefly Information-centric networking (ICN)

Van Jacobson: congestion avoidance, traceroute, tcpdump
2006 Google Tech Talk on A New Way to look at Networking
Many things have changed since IP specification RFC 791, 1981

Mostly not conversational traffic but networks distribute content
(mostly bandwidth-hungry video) in an inefficient unicast manner
to mobile devices

What if telephony is not the only way to route data packets?
What if IP is not the only way to distribute content?



Information-centric Networks (ICN)

i o Today’s host-centric IP
interconnecting machines
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o ICN interconnecting information
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Information-centric Networks (ICN)

o ICN interconnecting information

o Address content

o Add in-network storage everywhere,
not only at the edge

o Apply pervasive caching
o Facilitate nearest replica routing




Internet vs. ICN

Host-centric communications _ Content-centric communications
(host-to-host) (host-to-content) 6



Content is decoupled from its containers and
move in the network.

Challenge: How to discover the requested
content!?



Scoped-flooding

o Propagate the content discovery message in a scope, i.e. number
of hops message can travel

o Benefits of (scoped) flooding in the network
— Low state maintenance, low protocol complexity, etc.

— A scalable solution or not!?



Scoped-flooding

Requested content not in the cache
Initiate content-discovery using
scoped-flooding with scope 2




o 1-hop flooding

Scoped-flooding

content discovery packet




Scoped-flooding

o 2-hop flooding

content discovery packet
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Technically we want to know

O

O

O

ow to set the flooding scope optimally?
ow a network topology impacts the scope!

ow content availability impacts the scope?

In short, we want to flood on the right content at the

right place with the right scope.
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Three key components
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o The content (can be anything), only its value matters.



Three key components

‘ Content ‘ Utility= gain-cost
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o The content (can be anything), only its value matters.

o The representation of gain/cost as a function of # of nodes and content (value).



Three key components

@ Content @ Utility= gain-cost ® Network topology
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o The content (can be anything), only its value matters.
o The representation of gain/cost as a function of # of nodes and content (value).
o The network model based on which, we can tell how the # of nodes increases as a

function of # of hops (scope).



How are these components connected?

A node-centric ring-based model

-.q { \ Utility (ring r) = Gain(ring r) - Cost(ring r)
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,' 7 Ring 1: 1-hop neighbors

Ring 2: 2-hop neighbors



Utility modeling

[Utility = Expected value of content — expected cost of content discovery }




Utility modeling

LUtiIity = Expected value of content — expected cost of content discovery }

Content discovery success probability: # of total transmissions * cost,

probability that the requested content is cost: bandwidth, energy, delay
hosted by at least one of the nodes reached




Utility modeling

LUtiIity = Expected value of content — expected cost of content discovery }

Content discovery success probability: # of total transmissions * cost

probability that the requested content is cost: bandwidth, energy, delay
hosted by at least one of the nodes reached

Total number of nodes receiving the message = n Cost = n*c
Content availability = p (uniform distribution)
Gain = | —q"where q=I|-p
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Utility modeling

LUtiIity = Expected value of content — expected cost of content discovery }

Content discovery success probability: # of total transmissions * cost

probability that the requested content is cost: bandwidth, energy, delay
hosted by at least one of the nodes reached

Total number of nodes receiving the message = n Cost = n*c
Content availability = p (uniform distribution)
Gain = | —q"where q=I|-p

U=(1—-¢")—n-c
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Effect of p and c on flooding behavior

. o What is the critical cost c below which the node
0.15} will initiate scoped flooding for content with
g 01] availability p and given n?
© * The lower cost for higher n
o * A node with a large neighborhood is reluctant
% e 1 to flooding

Availability p

22
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Effect of p and c on flooding behavior
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What is the critical cost c below which the node
will initiate scoped flooding for content with
availability p and given n!?
* The lower cost for higher n
* A node with a large neighborhood is reluctant
to flooding

How does availability p affect flooding!?
* Higher p, worth flooding to more neighbors
* Lower p, conservative flooding
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What is the relation between n and scope r?

o Given scope r, n is the number of nodes that will receive the message:
n = f(r)
o Graph with a given degree distribution p,i.e., G = (N, p)

o h-hop neighborhood of a node: n,

on =2 n, where h<=r



1-hop neighbors

o k:random variable representing node degree
o <k>:expectation of node degree variable

o p;= Pr(k=i): the probability that a randomly
selected node has degree i



1-hop neighbors

o k:random variable representing node degree
o <k>:expectation of node degree variable

o p;= Pr(k=i): the probability that a randomly
selected node has degree i

o Expected number of 1-hop neighbors: n| = (k) = k;)kpk



1-hop, 2-hop neighbors
o Expected number of 1-hop neighbors: n, = (k) = Z kpy
k=0

o Expected number of 2-hop neighbors:
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1-hop, 2-hop neighbors
o Expected number of 1-hop neighbors: n, = (k) = Z kpy
k=0

o Expected number of 2-hop neighbors:

The probability of v; having k new next-hop neighbours is:

(k+1)pr+1
Y MPm

Therefore, the average number of new nodes from v; is:

ika _ Yiok(k+1D)prr1 _ Yiok(k—1)px (k) — (k)

k=0 Z/n mpm Zm mpm <k>

T, = Pr[deg(v;) = k|p] =

o <k?>:second moment of node degree variable -



1-hop, 2-hop, ..., r-hops

o Expected number of 1-hop neighbors: n, = (k) = Z kpy
k=0
o Expected number of 2-hop neighbors: n, = (k%) — (k)

o Expected number of r-hop neighbors:

N Zkf (%) ~ <">nr1:[<"2><k>]”.

(k)



1-hop, 2-hop, ..., r-hops

o Expected number of 1-hop neighbors: n, = (k) = Z kpy
k=0
o Expected number of 2-hop neighbors: n, = (k%) — (k)

o Expected number of r-hop neighbors:

(K?) — (k) ) -]

ny = N,_1 Zkr G N1 = ")



Neighborhood growth rate

A node can estimate its neighbourhood with 2-hop knowledge.



Neighborhood growth rate

A node can estimate its neighbourhood with 2-hop knowledge.

o Average network growth rate 3
o The ratio of # of ring r+| nodes to # of ring r nodes

g2



Neighborhood growth rate

A node can estimate its neighbourhood with 2-hop knowledge.

o Average network growth rate 3
o The ratio of # of ring r+| nodes to # of ring r nodes

peme @0y [s]

! (k)
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Neighborhood growth for random graphs
B INRIN <k2>_<k>

ni <k>

— Erdos-Renyi graph (ER)

* Every node is equally likely to be connected
with every other node with prob. p

* Poisson degree dist. for large N, small p

— Scale-free graph

* Some nodes are tightly connected (hub),
some have only a few connections

* Power-law degree dist. parameter X




Neighborhood growth for random graphs
B INRIN <k2>_<k>

ni <k>

— Erdos-Renyi graph (ER) B = (k)

* Every node is equally likely to be connected
with every other node with prob. p

* Poisson degree dist. for large N, small p

1
— Scale-free graph f=-— Va>3
* Some nodes are tightly connected (hub),

some have only a few connections
* Power-law degree dist. parameter X




How accurate can this model predict?

Synthetic topologies with 10.000 nodes and analyze the largest connected component
Calculate the degree distribution parameters from the actual graphs and find n.



How accurate can this model predict?

Synthetic topologies with 10.000 nodes and analyze the largest connected component
Calculate the degree distribution parameters from the actual graphs and find n,

Table 1: Overestimation of the model at each hop for various network graphs. V: Number of nodes and E: Number of nodes
in the generated instance of the graph, [: average path length. Shaded cells represent the cases where the error is below 0.20.

. Overestimation of the model

Id Topology \% E (k) l Clustering — s T =11 =5 =%
1 Random 339 338 1.994 | 23.07 0 0.327 1.046 | 2.359 | 4.692 | 9.092
2 Random 8030 | 9761 | 2.431 | 12.03 0 0.152 0.371 | 0.642 | 0.972 1.399
3 Random 9426 | 15068 | 3.197 | 8.30 0.00040 0.060 0.130 | 0.212 | 0.332 | 0.565
4 Random 9811 | 20073 | 4.091 | 6.75 0.00049 0.023 0.053 | 0.106 | 0.259 | 0.873
5 Random 9928 | 25060 | 5.048 | 5.88 0.00048 0.004 0.017 0.079 | 0.419 2.79

6 Random 9989 | 35020 | 7.011 | 4.95 0.00066 0.003 0.030 | 0.229 | 2.139 | 54.124
7 | Scale-free, o =3.24 | 7141 | 9648 2.70 7.88 0.00057 0.093 0.271 | 0.529 | 1.069 | 2.599
8 | Scale-free, a =3.35 | 5869 | 7347 2.50 8.66 0.00076 -0.115 | -0.174 | -0.194 | -0.16 0.013
9 | Scale-free, o« =3.50 | 5960 | 7357 2.47 8.99 0.00013 -0.356 | -0.555 | -0.68 | -0.757 | -0.794




How accurate can this model predict?

Synthetic topologies with 10.000 nodes and analyze the largest connected component
Calculate the degree distribution parameters from the actual graphs and find n,

Table 1: Overestimation of the model at each hop for various network graphs. V: Number of nodes and E: Number of nodes
in the generated instance of the graph, [: average path length. Shaded cells represent the cases where the error is below 0.20.

. Overestimation of the model

Id Topology \% E (k) l Clustering — s T =11 =5 =%
1 Random 339 338 1.994 | 23.07 0 0.327 1.046 | 2.359 | 4.692 | 9.092
2 Random 8030 | 9761 | 2.431 | 12.03 0 0.152 0.371 | 0.642 | 0.972 1.399
3 Random 9426 | 15068 | 3.197 | 8.30 0.00040 0.060 0.130 | 0.212 |10.332 | 0.565
4 Random 9811 | 20073 | 4.091 | 6.75 0.00049 0.023 0.053 | 0.106 |10.259 | 0.873
5 Random 9928 | 25060 | 5.048 | 5.88 0.00048 0.004 0.017 0.079 |10.419 2.79

6 Random 9989 | 35020 | 7.011 | 4.95 0.00066 0.003 0.030 | 0.229 |}2.139 | 54.124
7 | Scale-free, o =3.24 | 7141 | 9648 2.70 7.88 0.00057 0.093 0.271 | 0.529 |11.069 | 2.599
8 | Scale-free, o =3.35 | 5869 | 7347 2.50 8.66 0.00076 -0.115 | -0.174 | -0.194 | }-0.16 0.013
9 | Scale-free, o« =3.50 | 5960 | 7357 2.47 8.99 0.0001 -0.356 | -0.555 | -0.68 | -0.757 | -0.794

«

o Pretty accurately for big networks for 3 - 4 hops (finite network size in
contrast to large N in our model).
o Better accuracy for larger networks (small networks, small network diameter),



Theory does not always match reality

Test our network growth model with real ISP topologies from Rocketfuel

N. Spring, et al.,““Measuring ISP topologies with Rocketfuel,” in SIGCOMM,ACM, 2002. 39



Accuracy analysis on real ISP topologies
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Fast growth till 4-5 hops! Then drops due to limited network size and small
diameter.

N. Spring, et al.,““Measuring ISP topologies with Rocketfuel,” in SIGCOMM,ACM, 2002. 40



Summary: our model and analysis on real ISP
topologies show that
neighborhood growth is fast at the first hops

41



back to content discovery



Q:When to flood?

A: Flood when U>(

U=(1—-¢")—n-c




Q:When to flood?

A: Flood when U>(

U=(1—-¢")—n-c

AN
\O We have a model for n

as a function of r and
network topology




Q:When to flood?

A: Flood when U>(

U= (1—q¢")—n-
(/,61) n-c

«

How about q = I-p?

AN
\O We have a model for n

as a function of r and
network topology
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Estimating content availability p

o WVe consider two cases of a given content set.
" The availability is given as a priori knowledge.
* The availability is unknown, so we apply Bayesian inference™* to

estimate. : TR :
What is the availability given that | receive

this discovery message with hop count h,
i.e., h nodes do not have the content!?

=

* Esa Hyytia, S.Bayhan, ).Ott, ].Kangasharju, On Search and Content Availability in Opportunistic Networks, Computer Communications, vol.
73,PartA,Jan.2016



How to calculate the optimal scope?

Content availability

|-hop neighbors

2-hop neighbors

Network utility W

optimization J

U=(1—-¢")—n-c

Optimal
scope

47



How to calculate the optimal scope?

Content availability

Network utility W Optimal
|-hop neighbors S
. ) optimization J scope

n
2-hop neighbors U= (1 —( ) —n-cC

N
J

~
J

A good flooding strategy:
o Node is aware of its neighborhood with an accurate topological inference
o Node is aware of the content’s availability with an accurate inference on user

requests

48



Optimal scope for each node or for the whole

network?

o Static Flooding (r)
* Same optimal scope for all nodes
* A priori knowledge on availability
* Scope is optimised over the whole network using average # of
1-hop and 2-hop neighbours of the network
o Dynamic Flooding (r, for node i)
* Scope calculated for each node based on that node’s neighbors
*  With content availability, only flood on popular content
*  Without content availability, always flood 1-hop neighbours by
default to infer availability



Do graph generative models matter?

Synthetic graphs with 10000 nodes and 60000 edges

o Optimal scope 1-3 hops

o For higher content availability, scope can

be larger as there is a high chance that

Scale-free

the content will be in the network

Content with higher p
.................. ). ]
o Nodes in a scale-free network have

1 1.5 2 25 3 3.5

Optimal raciiys more diverse optimal scope setting

50



A closer look to the optimal scope

/ Optimal scope calculated by static flooding

1000 . .
[ Random [U| Static r = 2.784
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Optimal radius

o Scale free: more heterogeneity = divergence from network wide optimal scope.
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A closer look to the optimal scope
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o Scale free: more heterogeneity = divergence from network wide optimal scope.

o Negative correlation = nodes at the network core have smaller optimal scope
52



Is dynamic flooding always effective?

Improvement = (Utility of dynamic flooding - utility of static flooding) / utility of static flooding

0.95¢
0.9
8 0.85

0.8

0.75

——Random 1
——Scale-free

0 0.2 0.4 0.6
Improvement in utility

0.7

o Very little utility improvement (10% of the nodes) in ER graph because network-wide
optimal scope matches node-based optimal scope.
o ER:homogenous structure



Is dynamic flooding always effective?

Improvement = (Utility of dynamic flooding - utility of static flooding) / utility of static flooding
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o Correlation between growth and the utility improvement on random network (10% of
the nodes) is close to zero, indicating that the significance of improvement is irrelevant
of a node’s growth rate and its position in the network.

o Correlation on scale-free network (30% of the nodes) is much stronger, with Pearson
correlation being 0.53. >4



How utilities are distributed in the network?
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Strong negative correlation between the utility and betw. centrality.

In the dense area, a node has a high betw. centrality, it may include more neighbours
than necessary (the optimum) even just for |-hop neighbours.

In the sparser area, growth rate is lower, so nodes have a better control over the

neighborhood size by fine-tuning their scope leading to smaller cost and better utility.
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Comparison of dynamic, static, and network-wide
flooding

* Four realistic ISP networks and a community network.

* Each node has a 4GB cache with LRU algorithm.

= Content set is based on a Youtube video trace.

* Nodes of degree 1 are clients.

* 10 to 20 servers are randomly selected in a network.

" The collective request trace is generated using a Hawkes
process™, which is controlled by both temporal and spatial
locality factors.

A. Dabirmoghaddam, et al.,“Understanding optimal caching and opportunistic caching at “the edge” of information-centric
networks,” in ACM ICN’ 14,2014



Byte hit rate, cost, and average hops

AS Byte hit rate Cost Avg. hops nw: network-wide
nw | st dy | nw| st dy | nw | st dy "

1239] 0.44| 0.40] 0.43| 1.0| 027] 0.28| 1.90] 1.60] 1.62| fooding
2914| 0.49| 0.42] 047| 1.0| 0.31] 0.32| 1.75| 1.55| 1.58| St:static flooding
3356| 0.42| 0.39| 0.42| 1.0] 0.25| 0.27| 2.02| 1.69| 1.74| dy:dynamic flooding.
7018| 0.47| 0.41| 0.45| 1.0| 0.26| 0.28| 1.87| 1.54| 1.63
Guifi| 0.51] 0.44| 0.49| 1.0 0.22| 0.23| 1.71| 1.32| 1.38

o Network-wide flooding always achieves the best byte hit rate, the improvement
is marginal at the price of 2 to 3 times increase cost.

o Dynamic flooding consistently outperforms static one.

o Most content are discovered within 2 hops. Network-wide flooding has the
highest values due to its inherent aggressiveness.



What are the limitations of this model?

Clustering coefficient is not considered in the network
model, so it overestimates the neighbourhood growth.
Cost of retrieving a content is not considered.

Sublinear growth in gain and exponential growth in cost,
this needs to be verified and justified in reality.

Only evaluated with LRU, we do not know whether other
in-network caching algorithms will change our story or

not.



Key take-aways

The neighbourhood (of a medium scope) can be very well approximated with a
node’s 2-hop information.
Accurate estimation for 3-4 hops on the network growth

o Analysis on ISP topologies shows the fast network growth

o The choice on static or dynamic flooding depends on the network structure. l.e.,

random or scale-free networks.

o When to flood: If expected utility is positive, higher content availability

o Where to flood: Better at the network edge



Thanks

The slides and the paper are available at http://www.hiit.fi/u/bayhan/
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