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Briefly Information-centric networking (ICN)	
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o  Van Jacobson: congestion avoidance, traceroute, tcpdump 
o  2006 Google Tech Talk on A New Way to look at Networking 
o  Many things have changed since IP specification RFC 791, 1981 
o  Mostly not conversational traffic but networks distribute content 

(mostly bandwidth-hungry video) in an inefficient unicast manner 
to mobile devices	

o  What if telephony is not the only way to route data packets?	

o  What if IP is not the only way to distribute content?	



Information-centric Networks (ICN)	
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o  Today’s host-centric IP 
interconnecting machines	



Information-centric Networks (ICN)	
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o  ICN interconnecting information	

o  Address content	



Information-centric Networks (ICN)	
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o  ICN interconnecting information	

o  Address content	
o  Add in-network storage everywhere, 

not only at the edge	
o  Apply pervasive caching	

o  Facilitate nearest replica routing	



Internet vs. ICN	
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Host-centric communications	
(host-to-host)	

Content-centric communications	
(host-to-content)	
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Content is decoupled from its containers and 
move in the network.	

Challenge: How to discover the requested 
content?	



Scoped-flooding	
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o Propagate the content discovery message in a scope, i.e. number 
of hops message can travel	

o Benefits of (scoped) flooding in the network	
– Low state maintenance, low protocol complexity, etc.	

– A scalable solution or not?	



Scoped-flooding	
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Requested content not in the cache	
Initiate content-discovery using 
scoped-flooding with scope 2	



Scoped-flooding	
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o  1-hop flooding          content discovery packet	



Scoped-flooding	

11	

o  2-hop flooding          content discovery packet	
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Technically we want to know	
o  How to set the flooding scope optimally?	
o  How a network topology impacts the scope?	

o  How content availability impacts the scope?	

In short, we want to flood on the right content at the 
right place with the right scope.	
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Three key components	
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o  The content (can be anything), only its value matters.	

o  The representation of gain/cost as a function of # of nodes and content (value).	

o  The network model based on which, we can tell how the # of nodes increases as a 

function of # of hops (scope).	

	

Content	1	
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o  The representation of gain/cost as a function of # of nodes and content (value).	

o  The network model based on which, we can tell how the # of nodes increases as a 

function of # of hops (scope).	

	

Content	1	 Utility= gain-cost	2	 Network topology	3	



How are these components connected?	
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Utility (ring r)  = Gain(ring r) - Cost(ring r)	

Ring 1: 1-hop neighbors 	

Ring 2: 2-hop neighbors 	

A node-centric ring-based model	



Utility modeling	
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Utility = Expected value of content – expected cost of content discovery 	



Utility modeling	
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Utility = Expected value of content – expected cost of content discovery 	

Content discovery success probability: 
probability that the requested content is 
hosted by at least one of the nodes reached	

# of total transmissions * cost, 	
cost:  bandwidth, energy, delay	
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20	

Utility = Expected value of content – expected cost of content discovery 	

Content discovery success probability: 
probability that the requested content is 
hosted by at least one of the nodes reached	

# of total transmissions * cost, 	
cost:  bandwidth, energy, delay	

Total number of nodes receiving the message = n	
Content availability = p (uniform distribution)	
Gain = 1 – qn where  q = 1-p	

Cost = n*c	
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Utility = Expected value of content – expected cost of content discovery 	

Content discovery success probability: 
probability that the requested content is 
hosted by at least one of the nodes reached	

# of total transmissions * cost, 	
cost:  bandwidth, energy, delay	

Total number of nodes receiving the message = n	
Content availability = p (uniform distribution)	
Gain = 1 – qn where  q = 1-p	

Cost = n*c	

Since nodes may be up or down, we let g denote the prob-
ability that a node is up, namely a node’s reliability rate. We
define the effective nodes n̂r as the nodes that are working
and also reachable on the rth ring. Since only the effective
nodes contribute to flooding messages, i.e., improving con-
tent discovery, it is crucial to know the growth of effective
nodes for a specific g in order to derive the optimal radius.

Given a node has n1 1-hop neighbours, its effective 1-hop
neighbours equals n̂1 = gn1 by assuming a node’s state (up or
down) is independent of each other. Given growth rate b , the
effective 2-hop neighbours equals n̂2 = bg2n1. Similarly, we
can calculate n̂3 using n̂2. Applying iteratively, we calculate
the effective nodes on the rth ring as follows:

n̂r = (bg)r�1gn1 = grnr. (10)

It is easy to see the similarity between the eq.(3) and eq.(10).
In fact, n̂1 = gn1 is the effective 1-hop neighbours and bg
can be viewed as effective growth rate given nodes may fail
with certain probability (1� g). For low reliability rates, the
gap between the number of effective nodes and the r-hop
neighbourhood will quickly increase with an increasing r.

4.2 Content Availability as A Priori
The purpose of flooding is to increase the chance of dis-

covery by visiting enough nodes. Given n visited nodes, the
probability of finding the content of availability p equals
(1� qn) which we use to represent the gain from a flood-
ing. On the other hand, a bigger n also introduces larger cost
which limits the utility U as eq.(11) shows:

U = (1�qn)�n · c. (11)

�U in eq.(11) is apparently convex as an exponential func-
tion is convex and the linear combination of convex func-
tions preserves convexity. To maximise U , the optimal num-
ber of nodes n⇤ we need to visit can be calculated as below:

U 0(n) = 0 =)�qn · lnq� c = 0 =) n⇤ =
lnc� ln lnq�1

lnq
.

n⇤ represents the optimal total number of nodes. Using eq.(10),
we can calculate the optimal radius by summing up the effec-
tive nodes from ring 1 to r then solving the equation below.

Â
r

n̂r = Â
r
(bg)r�1gn1 = n⇤

4.3 Inferring the Content Availability
We previously assumed that the content availability p is

known a priori. Technically, we can set up monitoring nodes
to sample request streams. However, monitoring can be ex-
pensive and sometimes may not even be feasible. Neverthe-
less, the probability of finding a specific content in a neigh-
bourhood is a good indicator for its actual availability, since
the more popular a content is, the more probable it is to find
it among nearby neighbours. We use the Bayesian technique
proposed in [32] to estimate content availability. Eq.(12) is
the probability density function of p conditioned on previous

i negative (i.e., unsuccessful) queries.

f (p|i) = Pr(i|p) · f (p)
R 1

0 Pr(i|p) · f (p)d p
(12)

Because Pr(i|p) = qi, if we use the Bernoulli distribution
and let f (p) = 1, then we have

f (p|i) = qi
R 1

0 qid p
= (i+1)qi.

After getting the posterior of p, we can calculate the ex-
pected p after i negative queries as below

hpi=
Z 1

0
p(i+1)qid p =

Z 1

0
(i+1)(1�q)qidq =

1
i+2

. (13)

Note that neither p nor q appears in eq.(13). The deriva-
tion above gives a very clean estimation of content availabil-
ity especially when monitoring is not possible or the content
has never been observed before.

4.4 Content Availability as Posteriori
Without prior knowledge on content availability, we can-

not apply the conventional optimization as that in Section
4.2. Even with the Bayesian inference introduced in Sec-
tion 4.3, deciding the optimal radius can be difficult, es-
pecially when the request comes from directly connected
clients or does not carry any information about the number
of nodes it has traversed. To get around this challenge, we
let a node flood its 1-hop neighbours by default to bootstrap
the inference on p. Then we consider the utility of each ring
separately and adaptively adjust the estimate of p on every
ring. The general mechanism can be summarized as follows:

1. If a request does not contain useful information for
estimating the availability (e.g., number of nodes queried), a
node initiates a flooding to its directly connected neighbours.
A flood message carries 3 pieces of information: the node’s
local growth rate b = n2

n1
; number of 1-hop neighbours n1; a

counter r to record the number of hops it has travelled.3
2. When a node receives a flood message, it first estimates

the availability p using b , n1 and r embedded in the message
by assuming the requested content cannot be found so far
(within r-hop neighbours). More particularly, as follows:

hpi= 1
b r�1gr ·n1

Using this estimated p, the node then estimates the potential
utility of the next ring. Based on the estimated utility, the
node decides whether to continue the flooding or terminate.

More specifically, the overall utility of scoped-flooding is
decomposed according to our ring model. Given that Rr and
3Note that b , n1, and n2 here refer to the local properties of a spe-
cific node instead of the global average. We avoid to introduce
new notations because the following derivation on optimal radius
applies to both local and global cases which is independent on the
parameters plugged in. As we will show in Section 5, Dynamic
flooding uses local parameters while Static uses global ones.

5



Effect of p and c on flooding behavior	
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o  What is the critical cost c below which the node 
will initiate scoped flooding for content with 
availability p and given n?	
•  The lower cost for higher n	
•  A node with a large neighborhood is reluctant 

to flooding	

o  How does availability p affect flooding?	
•  Higher p, worth flooding to more neighbors	
•  Lower p, conservative flooding	



What is the relation between n and scope r?	
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o Given scope r,  n is the number of nodes that will receive the message: 

	 	 	n = f(r)	

o Graph with a given degree distribution ρ, i.e., G = (N, ρ)	

o h-hop neighborhood of a node: nh	

o n = Σ nh where h<=r 	
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1-hop neighbors	
o  k: random variable representing node degree	
o  <k>: expectation of node degree variable	

o  ρi = Pr(k=i):  the probability that a randomly 
selected node has degree i	
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o  Expected number of 1-hop neighbors:  	

1-hop neighbors	

n1 = 	

o  k: random variable representing node degree	
o  <k>: expectation of node degree variable	

o  ρi = Pr(k=i):  the probability that a randomly 
selected node has degree i	
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o  Expected number of 1-hop neighbors:	

o  Expected number of 2-hop neighbors:	

1-hop, 2-hop neighbors	

n1 = 	

vj	
τk	
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o  Expected number of 1-hop neighbors:	

o  Expected number of 2-hop neighbors:	

1-hop, 2-hop neighbors	

n1 = 	

vj	

o  <k2>: second moment of node degree variable	

τk	
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o  Expected number of 1-hop neighbors:	

o  Expected number of 2-hop neighbors:	

o  Expected number of r-hop neighbors: 	

1-hop, 2-hop, …, r-hops	

The probability of v j having k new next-hop neighbours is:

tk = Pr[deg(v j) = k|r] = (k+1)rk+1

Âm mrm
.

Therefore, the average number of new nodes from v j is:
•

Â
k=0

ktk =
Â•

k=0 k(k+1)rk+1

Âm mrm
=

Â•
k=0 k(k�1)rk

Âm mrm
=

hk2i�hki
hki .

Because we did not assume vi is on any specific concentric
ring except r � 2, we can use the same tk and the same logic
above to calculate arbitrary r-hop neighbours. Namely, nr
equals the average number of nodes on the (r � 1)th ring
multiplied by their average out-degree to the rth ring.

nr = nr�1

•

Â
k=0

ktk =
hk2i�hki

hki nr�1 =


hk2i�hki

hki

�r�1

· hki

(2)

Eq.(2) shows that the number of r-hop neighbours is a func-
tion of the degree variable. Using eq. (2), we can calcu-
late n2 = hk2i � hki. As we know n1 = hki, by applying
the replacement recursively, we can rewrite eq. (2) as below,
which eventually leads us to the same function found in [22].

nr =


n2

n1

�r�1
·n1. (3)

Eq.(3) shows that nr can also be expressed as a function of
the ratio between average number of 2-hop and 1-hop neigh-
bours. The neighbourhood size only converges if there are
fewer 2-hop neighbours than 1-hop ones, i.e., n2

n1
< 1, which

actually implies the network has multiple components with
high probability. We define neighbourhood growth rate b as

b , n2

n1
, hk2i�hki

hki . (4)

Note that the derivation above applies to any general net-
work of arbitrary degree distributions. The result gives an
interesting implication on the topological inference, which
says a node can approximate b by utilizing the local knowl-
edge within its 2-hop neighbourhood. In the following, we
focus on the growth rate b and study two specific network
models: random network and scale-free network. Both are
prominent in networking research due to their representa-
tiveness of many realistic networks [?, 27, 28]. Specifically,
empirical evidence shows mobile and opportunistic networks
can be either random [?] or scale-free [30], whereas fixed
and wired networks are mostly scale-free [27, 28].

3.2 Case 1: Random Networks
Random networks have a binomial degree distribution B(|V |,r)

which is given by the following formula [23]

rk =

✓
|V |�1

k

◆
rk(1�r)|V |�k�1.

For very big |V | and small r , the binomial distribution above
converges to the Poisson distribution in its limit. Then, the

degree distribution rk becomes:

lim
|V |!•

rk =
hkike�hki

k!
.

For calculating b in eq.(4), we need to derive the second
moment of random variable k, i.e., hk2i. Using Touchard
polynomials 1 , the rth moment of a variable with Poisson
distribution can be calculated as eq. (5) shows.

�r
k
 

denotes
Stirling numbers of the second kind [23] which represents
the number of ways to partition a set of r objects into k non-
empty subsets, and is known for calculating hkri.

hkri= e�hki
•

Â
k=0

hkik · kr

k!
=

r

Â
k=1

⇢
r
k

�
hkik (5)

Combining eq. (5) and eq. (2) yields

n2 =

⇢
2
2

�
hki2 +

⇢
2
1

�
hki�hki= hki2. (6)

Similarly, by applying the replacement recursively, we get

nr = hkir =) b = hki (7)

Eq. (7) shows that n1, n2, n3 ... form a geometric series.
The growth rate is b = hki. It is worth noting that many topo-
logical properties (e.g., average degree, density and etc.) are
homogeneous on random networks. In other words, a ran-
domly chosen sub-network possesses similar characteristics
as the whole network which is also known as self-similarity.

3.3 Case 2: Scale-free Networks
Although random networks give a very neat form of growth

rate, many realistic networks are scale-free and the node de-
gree follows a power-law distribution, i.e., r µ k�a with
a > 2 [27, 28, 30]. For a power-law distribution, the rth mo-
ment of random variable k equals:

hkri= kr
min ·

a �1
a �1� r

8a > r+1 (8)

Note that a power-law distribution is extremely right-skewed
and has a heavy tail. Only the first ba � 1c moments exist,
the other moments are infinite. If we plug eq.(8) into eq.(2)
and let kmin = 1, the growth rate equals:

b =
1

a �3
8a > 3 (9)

Eq. (9) means that though most real-life networks have a
well-defined average node degree, their variance is infinite,
which further indicates the growth rate b is unbounded.

For 3 < a < 4, the growth rate is bounded but the neigh-
bourhood size never converges. It is also interesting to no-
tice when a > 4, nr converges to zero at its limit r ! •. The
reason is the existence of super hubs with extremely high
1We can also use moment generating functions for a Poisson ran-
dom variable with parameter l , i.e., MX (t) = el (et�1), and we de-
rive hk2i by calculating M00

X (t = 0). This gives us: hk2i= hki2+hki.
hkri can be calculated using higher order moments similarly.
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Similarly, by applying the replacement recursively, we get
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Eq. (7) shows that n1, n2, n3 ... form a geometric series.
The growth rate is b = hki. It is worth noting that many topo-
logical properties (e.g., average degree, density and etc.) are
homogeneous on random networks. In other words, a ran-
domly chosen sub-network possesses similar characteristics
as the whole network which is also known as self-similarity.

3.3 Case 2: Scale-free Networks
Although random networks give a very neat form of growth

rate, many realistic networks are scale-free and the node de-
gree follows a power-law distribution, i.e., r µ k�a with
a > 2 [27, 28, 30]. For a power-law distribution, the rth mo-
ment of random variable k equals:
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Note that a power-law distribution is extremely right-skewed
and has a heavy tail. Only the first ba � 1c moments exist,
the other moments are infinite. If we plug eq.(8) into eq.(2)
and let kmin = 1, the growth rate equals:

b =
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Eq. (9) means that though most real-life networks have a
well-defined average node degree, their variance is infinite,
which further indicates the growth rate b is unbounded.

For 3 < a < 4, the growth rate is bounded but the neigh-
bourhood size never converges. It is also interesting to no-
tice when a > 4, nr converges to zero at its limit r ! •. The
reason is the existence of super hubs with extremely high
1We can also use moment generating functions for a Poisson ran-
dom variable with parameter l , i.e., MX (t) = el (et�1), and we de-
rive hk2i by calculating M00

X (t = 0). This gives us: hk2i= hki2+hki.
hkri can be calculated using higher order moments similarly.
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Because we did not assume vi is on any specific concentric
ring except r � 2, we can use the same tk and the same logic
above to calculate arbitrary r-hop neighbours. Namely, nr
equals the average number of nodes on the (r � 1)th ring
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Eq.(2) shows that the number of r-hop neighbours is a func-
tion of the degree variable. Using eq. (2), we can calcu-
late n2 = hk2i � hki. As we know n1 = hki, by applying
the replacement recursively, we can rewrite eq. (2) as below,
which eventually leads us to the same function found in [22].
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Eq.(3) shows that nr can also be expressed as a function of
the ratio between average number of 2-hop and 1-hop neigh-
bours. The neighbourhood size only converges if there are
fewer 2-hop neighbours than 1-hop ones, i.e., n2

n1
< 1, which

actually implies the network has multiple components with
high probability. We define neighbourhood growth rate b as

b , n2

n1
, hk2i�hki

hki . (4)

Note that the derivation above applies to any general net-
work of arbitrary degree distributions. The result gives an
interesting implication on the topological inference, which
says a node can approximate b by utilizing the local knowl-
edge within its 2-hop neighbourhood. In the following, we
focus on the growth rate b and study two specific network
models: random network and scale-free network. Both are
prominent in networking research due to their representa-
tiveness of many realistic networks [?, 27, 28]. Specifically,
empirical evidence shows mobile and opportunistic networks
can be either random [?] or scale-free [30], whereas fixed
and wired networks are mostly scale-free [27, 28].
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Random networks have a binomial degree distribution B(|V |,r)

which is given by the following formula [23]
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For calculating b in eq.(4), we need to derive the second
moment of random variable k, i.e., hk2i. Using Touchard
polynomials 1 , the rth moment of a variable with Poisson
distribution can be calculated as eq. (5) shows.
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Eq. (7) shows that n1, n2, n3 ... form a geometric series.
The growth rate is b = hki. It is worth noting that many topo-
logical properties (e.g., average degree, density and etc.) are
homogeneous on random networks. In other words, a ran-
domly chosen sub-network possesses similar characteristics
as the whole network which is also known as self-similarity.

3.3 Case 2: Scale-free Networks
Although random networks give a very neat form of growth
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ment of random variable k equals:

hkri= kr
min ·

a �1
a �1� r

8a > r+1 (8)
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and has a heavy tail. Only the first ba � 1c moments exist,
the other moments are infinite. If we plug eq.(8) into eq.(2)
and let kmin = 1, the growth rate equals:
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8a > 3 (9)

Eq. (9) means that though most real-life networks have a
well-defined average node degree, their variance is infinite,
which further indicates the growth rate b is unbounded.

For 3 < a < 4, the growth rate is bounded but the neigh-
bourhood size never converges. It is also interesting to no-
tice when a > 4, nr converges to zero at its limit r ! •. The
reason is the existence of super hubs with extremely high
1We can also use moment generating functions for a Poisson ran-
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rive hk2i by calculating M00
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Because we did not assume vi is on any specific concentric
ring except r � 2, we can use the same tk and the same logic
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Eq.(2) shows that the number of r-hop neighbours is a func-
tion of the degree variable. Using eq. (2), we can calcu-
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Note that the derivation above applies to any general net-
work of arbitrary degree distributions. The result gives an
interesting implication on the topological inference, which
says a node can approximate b by utilizing the local knowl-
edge within its 2-hop neighbourhood. In the following, we
focus on the growth rate b and study two specific network
models: random network and scale-free network. Both are
prominent in networking research due to their representa-
tiveness of many realistic networks [?, 27, 28]. Specifically,
empirical evidence shows mobile and opportunistic networks
can be either random [?] or scale-free [30], whereas fixed
and wired networks are mostly scale-free [27, 28].
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Eq. (7) shows that n1, n2, n3 ... form a geometric series.
The growth rate is b = hki. It is worth noting that many topo-
logical properties (e.g., average degree, density and etc.) are
homogeneous on random networks. In other words, a ran-
domly chosen sub-network possesses similar characteristics
as the whole network which is also known as self-similarity.

3.3 Case 2: Scale-free Networks
Although random networks give a very neat form of growth

rate, many realistic networks are scale-free and the node de-
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ment of random variable k equals:
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the other moments are infinite. If we plug eq.(8) into eq.(2)
and let kmin = 1, the growth rate equals:
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Eq. (9) means that though most real-life networks have a
well-defined average node degree, their variance is infinite,
which further indicates the growth rate b is unbounded.

For 3 < a < 4, the growth rate is bounded but the neigh-
bourhood size never converges. It is also interesting to no-
tice when a > 4, nr converges to zero at its limit r ! •. The
reason is the existence of super hubs with extremely high
1We can also use moment generating functions for a Poisson ran-
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The probability of v j having k new next-hop neighbours is:

tk = Pr[deg(v j) = k|r] = (k+1)rk+1
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Because we did not assume vi is on any specific concentric
ring except r � 2, we can use the same tk and the same logic
above to calculate arbitrary r-hop neighbours. Namely, nr
equals the average number of nodes on the (r � 1)th ring
multiplied by their average out-degree to the rth ring.
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Eq.(2) shows that the number of r-hop neighbours is a func-
tion of the degree variable. Using eq. (2), we can calcu-
late n2 = hk2i � hki. As we know n1 = hki, by applying
the replacement recursively, we can rewrite eq. (2) as below,
which eventually leads us to the same function found in [22].
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Eq.(3) shows that nr can also be expressed as a function of
the ratio between average number of 2-hop and 1-hop neigh-
bours. The neighbourhood size only converges if there are
fewer 2-hop neighbours than 1-hop ones, i.e., n2
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< 1, which

actually implies the network has multiple components with
high probability. We define neighbourhood growth rate b as
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hki . (4)

Note that the derivation above applies to any general net-
work of arbitrary degree distributions. The result gives an
interesting implication on the topological inference, which
says a node can approximate b by utilizing the local knowl-
edge within its 2-hop neighbourhood. In the following, we
focus on the growth rate b and study two specific network
models: random network and scale-free network. Both are
prominent in networking research due to their representa-
tiveness of many realistic networks [?, 27, 28]. Specifically,
empirical evidence shows mobile and opportunistic networks
can be either random [?] or scale-free [30], whereas fixed
and wired networks are mostly scale-free [27, 28].

3.2 Case 1: Random Networks
Random networks have a binomial degree distribution B(|V |,r)

which is given by the following formula [23]
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For very big |V | and small r , the binomial distribution above
converges to the Poisson distribution in its limit. Then, the

degree distribution rk becomes:

lim
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For calculating b in eq.(4), we need to derive the second
moment of random variable k, i.e., hk2i. Using Touchard
polynomials 1 , the rth moment of a variable with Poisson
distribution can be calculated as eq. (5) shows.
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the number of ways to partition a set of r objects into k non-
empty subsets, and is known for calculating hkri.
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Similarly, by applying the replacement recursively, we get

nr = hkir =) b = hki (7)

Eq. (7) shows that n1, n2, n3 ... form a geometric series.
The growth rate is b = hki. It is worth noting that many topo-
logical properties (e.g., average degree, density and etc.) are
homogeneous on random networks. In other words, a ran-
domly chosen sub-network possesses similar characteristics
as the whole network which is also known as self-similarity.

3.3 Case 2: Scale-free Networks
Although random networks give a very neat form of growth

rate, many realistic networks are scale-free and the node de-
gree follows a power-law distribution, i.e., r µ k�a with
a > 2 [27, 28, 30]. For a power-law distribution, the rth mo-
ment of random variable k equals:

hkri= kr
min ·

a �1
a �1� r

8a > r+1 (8)

Note that a power-law distribution is extremely right-skewed
and has a heavy tail. Only the first ba � 1c moments exist,
the other moments are infinite. If we plug eq.(8) into eq.(2)
and let kmin = 1, the growth rate equals:

b =
1

a �3
8a > 3 (9)

Eq. (9) means that though most real-life networks have a
well-defined average node degree, their variance is infinite,
which further indicates the growth rate b is unbounded.

For 3 < a < 4, the growth rate is bounded but the neigh-
bourhood size never converges. It is also interesting to no-
tice when a > 4, nr converges to zero at its limit r ! •. The
reason is the existence of super hubs with extremely high
1We can also use moment generating functions for a Poisson ran-
dom variable with parameter l , i.e., MX (t) = el (et�1), and we de-
rive hk2i by calculating M00

X (t = 0). This gives us: hk2i= hki2+hki.
hkri can be calculated using higher order moments similarly.
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The probability of v j having k new next-hop neighbours is:

tk = Pr[deg(v j) = k|r] = (k+1)rk+1
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Because we did not assume vi is on any specific concentric
ring except r � 2, we can use the same tk and the same logic
above to calculate arbitrary r-hop neighbours. Namely, nr
equals the average number of nodes on the (r � 1)th ring
multiplied by their average out-degree to the rth ring.
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Eq.(2) shows that the number of r-hop neighbours is a func-
tion of the degree variable. Using eq. (2), we can calcu-
late n2 = hk2i � hki. As we know n1 = hki, by applying
the replacement recursively, we can rewrite eq. (2) as below,
which eventually leads us to the same function found in [22].
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Eq.(3) shows that nr can also be expressed as a function of
the ratio between average number of 2-hop and 1-hop neigh-
bours. The neighbourhood size only converges if there are
fewer 2-hop neighbours than 1-hop ones, i.e., n2

n1
< 1, which

actually implies the network has multiple components with
high probability. We define neighbourhood growth rate b as
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Note that the derivation above applies to any general net-
work of arbitrary degree distributions. The result gives an
interesting implication on the topological inference, which
says a node can approximate b by utilizing the local knowl-
edge within its 2-hop neighbourhood. In the following, we
focus on the growth rate b and study two specific network
models: random network and scale-free network. Both are
prominent in networking research due to their representa-
tiveness of many realistic networks [?, 27, 28]. Specifically,
empirical evidence shows mobile and opportunistic networks
can be either random [?] or scale-free [30], whereas fixed
and wired networks are mostly scale-free [27, 28].

3.2 Case 1: Random Networks
Random networks have a binomial degree distribution B(|V |,r)

which is given by the following formula [23]
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For very big |V | and small r , the binomial distribution above
converges to the Poisson distribution in its limit. Then, the

degree distribution rk becomes:
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For calculating b in eq.(4), we need to derive the second
moment of random variable k, i.e., hk2i. Using Touchard
polynomials 1 , the rth moment of a variable with Poisson
distribution can be calculated as eq. (5) shows.
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Similarly, by applying the replacement recursively, we get
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Eq. (7) shows that n1, n2, n3 ... form a geometric series.
The growth rate is b = hki. It is worth noting that many topo-
logical properties (e.g., average degree, density and etc.) are
homogeneous on random networks. In other words, a ran-
domly chosen sub-network possesses similar characteristics
as the whole network which is also known as self-similarity.

3.3 Case 2: Scale-free Networks
Although random networks give a very neat form of growth

rate, many realistic networks are scale-free and the node de-
gree follows a power-law distribution, i.e., r µ k�a with
a > 2 [27, 28, 30]. For a power-law distribution, the rth mo-
ment of random variable k equals:
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Note that a power-law distribution is extremely right-skewed
and has a heavy tail. Only the first ba � 1c moments exist,
the other moments are infinite. If we plug eq.(8) into eq.(2)
and let kmin = 1, the growth rate equals:

b =
1

a �3
8a > 3 (9)

Eq. (9) means that though most real-life networks have a
well-defined average node degree, their variance is infinite,
which further indicates the growth rate b is unbounded.

For 3 < a < 4, the growth rate is bounded but the neigh-
bourhood size never converges. It is also interesting to no-
tice when a > 4, nr converges to zero at its limit r ! •. The
reason is the existence of super hubs with extremely high
1We can also use moment generating functions for a Poisson ran-
dom variable with parameter l , i.e., MX (t) = el (et�1), and we de-
rive hk2i by calculating M00
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Because we did not assume vi is on any specific concentric
ring except r � 2, we can use the same tk and the same logic
above to calculate arbitrary r-hop neighbours. Namely, nr
equals the average number of nodes on the (r � 1)th ring
multiplied by their average out-degree to the rth ring.

nr = nr�1

•

Â
k=0

ktk =
hk2i�hki

hki nr�1 =


hk2i�hki

hki

�r�1

· hki

(2)

Eq.(2) shows that the number of r-hop neighbours is a func-
tion of the degree variable. Using eq. (2), we can calcu-
late n2 = hk2i � hki. As we know n1 = hki, by applying
the replacement recursively, we can rewrite eq. (2) as below,
which eventually leads us to the same function found in [22].
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Eq.(3) shows that nr can also be expressed as a function of
the ratio between average number of 2-hop and 1-hop neigh-
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b , n2

n1
, hk2i�hki

hki . (4)

Note that the derivation above applies to any general net-
work of arbitrary degree distributions. The result gives an
interesting implication on the topological inference, which
says a node can approximate b by utilizing the local knowl-
edge within its 2-hop neighbourhood. In the following, we
focus on the growth rate b and study two specific network
models: random network and scale-free network. Both are
prominent in networking research due to their representa-
tiveness of many realistic networks [?, 27, 28]. Specifically,
empirical evidence shows mobile and opportunistic networks
can be either random [?] or scale-free [30], whereas fixed
and wired networks are mostly scale-free [27, 28].
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Random networks have a binomial degree distribution B(|V |,r)

which is given by the following formula [23]
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For calculating b in eq.(4), we need to derive the second
moment of random variable k, i.e., hk2i. Using Touchard
polynomials 1 , the rth moment of a variable with Poisson
distribution can be calculated as eq. (5) shows.
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Combining eq. (5) and eq. (2) yields
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Similarly, by applying the replacement recursively, we get

nr = hkir =) b = hki (7)

Eq. (7) shows that n1, n2, n3 ... form a geometric series.
The growth rate is b = hki. It is worth noting that many topo-
logical properties (e.g., average degree, density and etc.) are
homogeneous on random networks. In other words, a ran-
domly chosen sub-network possesses similar characteristics
as the whole network which is also known as self-similarity.

3.3 Case 2: Scale-free Networks
Although random networks give a very neat form of growth

rate, many realistic networks are scale-free and the node de-
gree follows a power-law distribution, i.e., r µ k�a with
a > 2 [27, 28, 30]. For a power-law distribution, the rth mo-
ment of random variable k equals:

hkri= kr
min ·

a �1
a �1� r

8a > r+1 (8)

Note that a power-law distribution is extremely right-skewed
and has a heavy tail. Only the first ba � 1c moments exist,
the other moments are infinite. If we plug eq.(8) into eq.(2)
and let kmin = 1, the growth rate equals:

b =
1

a �3
8a > 3 (9)

Eq. (9) means that though most real-life networks have a
well-defined average node degree, their variance is infinite,
which further indicates the growth rate b is unbounded.

For 3 < a < 4, the growth rate is bounded but the neigh-
bourhood size never converges. It is also interesting to no-
tice when a > 4, nr converges to zero at its limit r ! •. The
reason is the existence of super hubs with extremely high
1We can also use moment generating functions for a Poisson ran-
dom variable with parameter l , i.e., MX (t) = el (et�1), and we de-
rive hk2i by calculating M00

X (t = 0). This gives us: hk2i= hki2+hki.
hkri can be calculated using higher order moments similarly.
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The probability of v j having k new next-hop neighbours is:
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Because we did not assume vi is on any specific concentric
ring except r � 2, we can use the same tk and the same logic
above to calculate arbitrary r-hop neighbours. Namely, nr
equals the average number of nodes on the (r � 1)th ring
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Eq.(2) shows that the number of r-hop neighbours is a func-
tion of the degree variable. Using eq. (2), we can calcu-
late n2 = hk2i � hki. As we know n1 = hki, by applying
the replacement recursively, we can rewrite eq. (2) as below,
which eventually leads us to the same function found in [22].
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Eq.(3) shows that nr can also be expressed as a function of
the ratio between average number of 2-hop and 1-hop neigh-
bours. The neighbourhood size only converges if there are
fewer 2-hop neighbours than 1-hop ones, i.e., n2

n1
< 1, which

actually implies the network has multiple components with
high probability. We define neighbourhood growth rate b as
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Note that the derivation above applies to any general net-
work of arbitrary degree distributions. The result gives an
interesting implication on the topological inference, which
says a node can approximate b by utilizing the local knowl-
edge within its 2-hop neighbourhood. In the following, we
focus on the growth rate b and study two specific network
models: random network and scale-free network. Both are
prominent in networking research due to their representa-
tiveness of many realistic networks [?, 27, 28]. Specifically,
empirical evidence shows mobile and opportunistic networks
can be either random [?] or scale-free [30], whereas fixed
and wired networks are mostly scale-free [27, 28].

3.2 Case 1: Random Networks
Random networks have a binomial degree distribution B(|V |,r)

which is given by the following formula [23]
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For very big |V | and small r , the binomial distribution above
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For calculating b in eq.(4), we need to derive the second
moment of random variable k, i.e., hk2i. Using Touchard
polynomials 1 , the rth moment of a variable with Poisson
distribution can be calculated as eq. (5) shows.
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Similarly, by applying the replacement recursively, we get

nr = hkir =) b = hki (7)

Eq. (7) shows that n1, n2, n3 ... form a geometric series.
The growth rate is b = hki. It is worth noting that many topo-
logical properties (e.g., average degree, density and etc.) are
homogeneous on random networks. In other words, a ran-
domly chosen sub-network possesses similar characteristics
as the whole network which is also known as self-similarity.

3.3 Case 2: Scale-free Networks
Although random networks give a very neat form of growth

rate, many realistic networks are scale-free and the node de-
gree follows a power-law distribution, i.e., r µ k�a with
a > 2 [27, 28, 30]. For a power-law distribution, the rth mo-
ment of random variable k equals:
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Note that a power-law distribution is extremely right-skewed
and has a heavy tail. Only the first ba � 1c moments exist,
the other moments are infinite. If we plug eq.(8) into eq.(2)
and let kmin = 1, the growth rate equals:

b =
1
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8a > 3 (9)

Eq. (9) means that though most real-life networks have a
well-defined average node degree, their variance is infinite,
which further indicates the growth rate b is unbounded.

For 3 < a < 4, the growth rate is bounded but the neigh-
bourhood size never converges. It is also interesting to no-
tice when a > 4, nr converges to zero at its limit r ! •. The
reason is the existence of super hubs with extremely high
1We can also use moment generating functions for a Poisson ran-
dom variable with parameter l , i.e., MX (t) = el (et�1), and we de-
rive hk2i by calculating M00

X (t = 0). This gives us: hk2i= hki2+hki.
hkri can be calculated using higher order moments similarly.
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o  Average network growth rate β 	
o  The ratio of # of ring r+1 nodes to # of ring r nodes	
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Eq.(2) shows that the number of r-hop neighbours is a func-
tion of the degree variable. Using eq. (2), we can calcu-
late n2 = hk2i � hki. As we know n1 = hki, by applying
the replacement recursively, we can rewrite eq. (2) as below,
which eventually leads us to the same function found in [22].
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the ratio between average number of 2-hop and 1-hop neigh-
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Note that the derivation above applies to any general net-
work of arbitrary degree distributions. The result gives an
interesting implication on the topological inference, which
says a node can approximate b by utilizing the local knowl-
edge within its 2-hop neighbourhood. In the following, we
focus on the growth rate b and study two specific network
models: random network and scale-free network. Both are
prominent in networking research due to their representa-
tiveness of many realistic networks [?, 27, 28]. Specifically,
empirical evidence shows mobile and opportunistic networks
can be either random [?] or scale-free [30], whereas fixed
and wired networks are mostly scale-free [27, 28].

3.2 Case 1: Random Networks
Random networks have a binomial degree distribution B(|V |,r)

which is given by the following formula [23]
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For calculating b in eq.(4), we need to derive the second
moment of random variable k, i.e., hk2i. Using Touchard
polynomials 1 , the rth moment of a variable with Poisson
distribution can be calculated as eq. (5) shows.
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Similarly, by applying the replacement recursively, we get
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Eq. (7) shows that n1, n2, n3 ... form a geometric series.
The growth rate is b = hki. It is worth noting that many topo-
logical properties (e.g., average degree, density and etc.) are
homogeneous on random networks. In other words, a ran-
domly chosen sub-network possesses similar characteristics
as the whole network which is also known as self-similarity.

3.3 Case 2: Scale-free Networks
Although random networks give a very neat form of growth

rate, many realistic networks are scale-free and the node de-
gree follows a power-law distribution, i.e., r µ k�a with
a > 2 [27, 28, 30]. For a power-law distribution, the rth mo-
ment of random variable k equals:
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Note that a power-law distribution is extremely right-skewed
and has a heavy tail. Only the first ba � 1c moments exist,
the other moments are infinite. If we plug eq.(8) into eq.(2)
and let kmin = 1, the growth rate equals:

b =
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Eq. (9) means that though most real-life networks have a
well-defined average node degree, their variance is infinite,
which further indicates the growth rate b is unbounded.

For 3 < a < 4, the growth rate is bounded but the neigh-
bourhood size never converges. It is also interesting to no-
tice when a > 4, nr converges to zero at its limit r ! •. The
reason is the existence of super hubs with extremely high
1We can also use moment generating functions for a Poisson ran-
dom variable with parameter l , i.e., MX (t) = el (et�1), and we de-
rive hk2i by calculating M00
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The probability of v j having k new next-hop neighbours is:
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Because we did not assume vi is on any specific concentric
ring except r � 2, we can use the same tk and the same logic
above to calculate arbitrary r-hop neighbours. Namely, nr
equals the average number of nodes on the (r � 1)th ring
multiplied by their average out-degree to the rth ring.
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Eq.(2) shows that the number of r-hop neighbours is a func-
tion of the degree variable. Using eq. (2), we can calcu-
late n2 = hk2i � hki. As we know n1 = hki, by applying
the replacement recursively, we can rewrite eq. (2) as below,
which eventually leads us to the same function found in [22].
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Eq.(3) shows that nr can also be expressed as a function of
the ratio between average number of 2-hop and 1-hop neigh-
bours. The neighbourhood size only converges if there are
fewer 2-hop neighbours than 1-hop ones, i.e., n2
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< 1, which

actually implies the network has multiple components with
high probability. We define neighbourhood growth rate b as
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Note that the derivation above applies to any general net-
work of arbitrary degree distributions. The result gives an
interesting implication on the topological inference, which
says a node can approximate b by utilizing the local knowl-
edge within its 2-hop neighbourhood. In the following, we
focus on the growth rate b and study two specific network
models: random network and scale-free network. Both are
prominent in networking research due to their representa-
tiveness of many realistic networks [?, 27, 28]. Specifically,
empirical evidence shows mobile and opportunistic networks
can be either random [?] or scale-free [30], whereas fixed
and wired networks are mostly scale-free [27, 28].

3.2 Case 1: Random Networks
Random networks have a binomial degree distribution B(|V |,r)

which is given by the following formula [23]
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For very big |V | and small r , the binomial distribution above
converges to the Poisson distribution in its limit. Then, the
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For calculating b in eq.(4), we need to derive the second
moment of random variable k, i.e., hk2i. Using Touchard
polynomials 1 , the rth moment of a variable with Poisson
distribution can be calculated as eq. (5) shows.
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Similarly, by applying the replacement recursively, we get

nr = hkir =) b = hki (7)

Eq. (7) shows that n1, n2, n3 ... form a geometric series.
The growth rate is b = hki. It is worth noting that many topo-
logical properties (e.g., average degree, density and etc.) are
homogeneous on random networks. In other words, a ran-
domly chosen sub-network possesses similar characteristics
as the whole network which is also known as self-similarity.

3.3 Case 2: Scale-free Networks
Although random networks give a very neat form of growth

rate, many realistic networks are scale-free and the node de-
gree follows a power-law distribution, i.e., r µ k�a with
a > 2 [27, 28, 30]. For a power-law distribution, the rth mo-
ment of random variable k equals:
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min ·
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8a > r+1 (8)

Note that a power-law distribution is extremely right-skewed
and has a heavy tail. Only the first ba � 1c moments exist,
the other moments are infinite. If we plug eq.(8) into eq.(2)
and let kmin = 1, the growth rate equals:

b =
1

a �3
8a > 3 (9)

Eq. (9) means that though most real-life networks have a
well-defined average node degree, their variance is infinite,
which further indicates the growth rate b is unbounded.

For 3 < a < 4, the growth rate is bounded but the neigh-
bourhood size never converges. It is also interesting to no-
tice when a > 4, nr converges to zero at its limit r ! •. The
reason is the existence of super hubs with extremely high
1We can also use moment generating functions for a Poisson ran-
dom variable with parameter l , i.e., MX (t) = el (et�1), and we de-
rive hk2i by calculating M00

X (t = 0). This gives us: hk2i= hki2+hki.
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– Erdös-Renyi graph (ER)	
•  Every node is equally likely to be connected 

with every other node with prob. p	

•  Poisson degree dist. for large N, small p	

–  Scale-free graph 	
•  Some nodes are tightly connected (hub), 

some have only a few connections	
•  Power-law degree dist. parameter α	

The probability of v j having k new next-hop neighbours is:
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Because we did not assume vi is on any specific concentric
ring except r � 2, we can use the same tk and the same logic
above to calculate arbitrary r-hop neighbours. Namely, nr
equals the average number of nodes on the (r � 1)th ring
multiplied by their average out-degree to the rth ring.
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Eq.(2) shows that the number of r-hop neighbours is a func-
tion of the degree variable. Using eq. (2), we can calcu-
late n2 = hk2i � hki. As we know n1 = hki, by applying
the replacement recursively, we can rewrite eq. (2) as below,
which eventually leads us to the same function found in [22].
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Eq.(3) shows that nr can also be expressed as a function of
the ratio between average number of 2-hop and 1-hop neigh-
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Note that the derivation above applies to any general net-
work of arbitrary degree distributions. The result gives an
interesting implication on the topological inference, which
says a node can approximate b by utilizing the local knowl-
edge within its 2-hop neighbourhood. In the following, we
focus on the growth rate b and study two specific network
models: random network and scale-free network. Both are
prominent in networking research due to their representa-
tiveness of many realistic networks [?, 27, 28]. Specifically,
empirical evidence shows mobile and opportunistic networks
can be either random [?] or scale-free [30], whereas fixed
and wired networks are mostly scale-free [27, 28].
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For calculating b in eq.(4), we need to derive the second
moment of random variable k, i.e., hk2i. Using Touchard
polynomials 1 , the rth moment of a variable with Poisson
distribution can be calculated as eq. (5) shows.
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Eq. (7) shows that n1, n2, n3 ... form a geometric series.
The growth rate is b = hki. It is worth noting that many topo-
logical properties (e.g., average degree, density and etc.) are
homogeneous on random networks. In other words, a ran-
domly chosen sub-network possesses similar characteristics
as the whole network which is also known as self-similarity.
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Although random networks give a very neat form of growth
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a > 2 [27, 28, 30]. For a power-law distribution, the rth mo-
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the other moments are infinite. If we plug eq.(8) into eq.(2)
and let kmin = 1, the growth rate equals:
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Eq. (9) means that though most real-life networks have a
well-defined average node degree, their variance is infinite,
which further indicates the growth rate b is unbounded.

For 3 < a < 4, the growth rate is bounded but the neigh-
bourhood size never converges. It is also interesting to no-
tice when a > 4, nr converges to zero at its limit r ! •. The
reason is the existence of super hubs with extremely high
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Eq.(2) shows that the number of r-hop neighbours is a func-
tion of the degree variable. Using eq. (2), we can calcu-
late n2 = hk2i � hki. As we know n1 = hki, by applying
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Eq.(3) shows that nr can also be expressed as a function of
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Note that the derivation above applies to any general net-
work of arbitrary degree distributions. The result gives an
interesting implication on the topological inference, which
says a node can approximate b by utilizing the local knowl-
edge within its 2-hop neighbourhood. In the following, we
focus on the growth rate b and study two specific network
models: random network and scale-free network. Both are
prominent in networking research due to their representa-
tiveness of many realistic networks [?, 27, 28]. Specifically,
empirical evidence shows mobile and opportunistic networks
can be either random [?] or scale-free [30], whereas fixed
and wired networks are mostly scale-free [27, 28].

3.2 Case 1: Random Networks
Random networks have a binomial degree distribution B(|V |,r)
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For calculating b in eq.(4), we need to derive the second
moment of random variable k, i.e., hk2i. Using Touchard
polynomials 1 , the rth moment of a variable with Poisson
distribution can be calculated as eq. (5) shows.
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Stirling numbers of the second kind [23] which represents
the number of ways to partition a set of r objects into k non-
empty subsets, and is known for calculating hkri.
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Combining eq. (5) and eq. (2) yields
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Similarly, by applying the replacement recursively, we get

nr = hkir =) b = hki (7)

Eq. (7) shows that n1, n2, n3 ... form a geometric series.
The growth rate is b = hki. It is worth noting that many topo-
logical properties (e.g., average degree, density and etc.) are
homogeneous on random networks. In other words, a ran-
domly chosen sub-network possesses similar characteristics
as the whole network which is also known as self-similarity.

3.3 Case 2: Scale-free Networks
Although random networks give a very neat form of growth

rate, many realistic networks are scale-free and the node de-
gree follows a power-law distribution, i.e., r µ k�a with
a > 2 [27, 28, 30]. For a power-law distribution, the rth mo-
ment of random variable k equals:

hkri= kr
min ·

a �1
a �1� r

8a > r+1 (8)

Note that a power-law distribution is extremely right-skewed
and has a heavy tail. Only the first ba � 1c moments exist,
the other moments are infinite. If we plug eq.(8) into eq.(2)
and let kmin = 1, the growth rate equals:

b =
1

a �3
8a > 3 (9)

Eq. (9) means that though most real-life networks have a
well-defined average node degree, their variance is infinite,
which further indicates the growth rate b is unbounded.

For 3 < a < 4, the growth rate is bounded but the neigh-
bourhood size never converges. It is also interesting to no-
tice when a > 4, nr converges to zero at its limit r ! •. The
reason is the existence of super hubs with extremely high
1We can also use moment generating functions for a Poisson ran-
dom variable with parameter l , i.e., MX (t) = el (et�1), and we de-
rive hk2i by calculating M00

X (t = 0). This gives us: hk2i= hki2+hki.
hkri can be calculated using higher order moments similarly.
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– Erdös-Renyi graph (ER)	
•  Every node is equally likely to be connected 

with every other node with prob. p	

•  Poisson degree dist. for large N, small p	

–  Scale-free graph 	
•  Some nodes are tightly connected (hub), 

some have only a few connections	
•  Power-law degree dist. parameter α	
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Because we did not assume vi is on any specific concentric
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above to calculate arbitrary r-hop neighbours. Namely, nr
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Eq.(2) shows that the number of r-hop neighbours is a func-
tion of the degree variable. Using eq. (2), we can calcu-
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which eventually leads us to the same function found in [22].

nr =


n2

n1

�r�1
·n1. (3)
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the ratio between average number of 2-hop and 1-hop neigh-
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Note that the derivation above applies to any general net-
work of arbitrary degree distributions. The result gives an
interesting implication on the topological inference, which
says a node can approximate b by utilizing the local knowl-
edge within its 2-hop neighbourhood. In the following, we
focus on the growth rate b and study two specific network
models: random network and scale-free network. Both are
prominent in networking research due to their representa-
tiveness of many realistic networks [?, 27, 28]. Specifically,
empirical evidence shows mobile and opportunistic networks
can be either random [?] or scale-free [30], whereas fixed
and wired networks are mostly scale-free [27, 28].
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Random networks have a binomial degree distribution B(|V |,r)

which is given by the following formula [23]
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For calculating b in eq.(4), we need to derive the second
moment of random variable k, i.e., hk2i. Using Touchard
polynomials 1 , the rth moment of a variable with Poisson
distribution can be calculated as eq. (5) shows.
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Eq. (7) shows that n1, n2, n3 ... form a geometric series.
The growth rate is b = hki. It is worth noting that many topo-
logical properties (e.g., average degree, density and etc.) are
homogeneous on random networks. In other words, a ran-
domly chosen sub-network possesses similar characteristics
as the whole network which is also known as self-similarity.

3.3 Case 2: Scale-free Networks
Although random networks give a very neat form of growth

rate, many realistic networks are scale-free and the node de-
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a > 2 [27, 28, 30]. For a power-law distribution, the rth mo-
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and has a heavy tail. Only the first ba � 1c moments exist,
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and let kmin = 1, the growth rate equals:
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Eq. (9) means that though most real-life networks have a
well-defined average node degree, their variance is infinite,
which further indicates the growth rate b is unbounded.

For 3 < a < 4, the growth rate is bounded but the neigh-
bourhood size never converges. It is also interesting to no-
tice when a > 4, nr converges to zero at its limit r ! •. The
reason is the existence of super hubs with extremely high
1We can also use moment generating functions for a Poisson ran-
dom variable with parameter l , i.e., MX (t) = el (et�1), and we de-
rive hk2i by calculating M00

X (t = 0). This gives us: hk2i= hki2+hki.
hkri can be calculated using higher order moments similarly.

3

Neighborhood growth for random graphs	

The probability of v j having k new next-hop neighbours is:

tk = Pr[deg(v j) = k|r] = (k+1)rk+1

Âm mrm
.

Therefore, the average number of new nodes from v j is:
•

Â
k=0

ktk =
Â•

k=0 k(k+1)rk+1

Âm mrm
=

Â•
k=0 k(k�1)rk

Âm mrm
=

hk2i�hki
hki .

Because we did not assume vi is on any specific concentric
ring except r � 2, we can use the same tk and the same logic
above to calculate arbitrary r-hop neighbours. Namely, nr
equals the average number of nodes on the (r � 1)th ring
multiplied by their average out-degree to the rth ring.

nr = nr�1

•

Â
k=0

ktk =
hk2i�hki

hki nr�1 =


hk2i�hki

hki

�r�1

· hki

(2)

Eq.(2) shows that the number of r-hop neighbours is a func-
tion of the degree variable. Using eq. (2), we can calcu-
late n2 = hk2i � hki. As we know n1 = hki, by applying
the replacement recursively, we can rewrite eq. (2) as below,
which eventually leads us to the same function found in [22].

nr =


n2

n1

�r�1
·n1. (3)

Eq.(3) shows that nr can also be expressed as a function of
the ratio between average number of 2-hop and 1-hop neigh-
bours. The neighbourhood size only converges if there are
fewer 2-hop neighbours than 1-hop ones, i.e., n2

n1
< 1, which

actually implies the network has multiple components with
high probability. We define neighbourhood growth rate b as

b , n2

n1
, hk2i�hki

hki . (4)

Note that the derivation above applies to any general net-
work of arbitrary degree distributions. The result gives an
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says a node can approximate b by utilizing the local knowl-
edge within its 2-hop neighbourhood. In the following, we
focus on the growth rate b and study two specific network
models: random network and scale-free network. Both are
prominent in networking research due to their representa-
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can be either random [?] or scale-free [30], whereas fixed
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Eq. (7) shows that n1, n2, n3 ... form a geometric series.
The growth rate is b = hki. It is worth noting that many topo-
logical properties (e.g., average degree, density and etc.) are
homogeneous on random networks. In other words, a ran-
domly chosen sub-network possesses similar characteristics
as the whole network which is also known as self-similarity.

3.3 Case 2: Scale-free Networks
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well-defined average node degree, their variance is infinite,
which further indicates the growth rate b is unbounded.
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bourhood size never converges. It is also interesting to no-
tice when a > 4, nr converges to zero at its limit r ! •. The
reason is the existence of super hubs with extremely high
1We can also use moment generating functions for a Poisson ran-
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Table 1: Overestimation of the model at each hop for various network graphs. V : Number of nodes and E: Number of nodes
in the generated instance of the graph, l: average path length. Shaded cells represent the cases where the error is below 0.20.

Id Topology V E hki l Clustering
Overestimation of the model

r = 2 r = 3 r = 4 r = 5 r = 6
1 Random 339 338 1.994 23.07 0 0.327 1.046 2.359 4.692 9.092
2 Random 8030 9761 2.431 12.03 0 0.152 0.371 0.642 0.972 1.399
3 Random 9426 15068 3.197 8.30 0.00040 0.060 0.130 0.212 0.332 0.565
4 Random 9811 20073 4.091 6.75 0.00049 0.023 0.053 0.106 0.259 0.873
5 Random 9928 25060 5.048 5.88 0.00048 0.004 0.017 0.079 0.419 2.79
6 Random 9989 35020 7.011 4.95 0.00066 0.003 0.030 0.229 2.139 54.124
7 Scale-free, ↵ =3.24 7141 9648 2.70 7.88 0.00057 0.093 0.271 0.529 1.069 2.599
8 Scale-free, ↵ =3.35 5869 7347 2.50 8.66 0.00076 -0.115 -0.174 -0.194 -0.16 0.013
9 Scale-free, ↵ =3.50 5960 7357 2.47 8.99 0.00013 -0.356 -0.555 -0.68 -0.757 -0.794

For 3 < ↵ < 4, the growth rate is bounded but the neigh-
bourhood size never converges. It is also interesting to notice
when ↵ > 4, nr converges to zero at its limit r ! 1. The
reason is the existence of super hubs with extremely high
degrees which strengthens the small-world e↵ect and makes
the network diameter extremely short. We refer to [23] for
more thorough and interesting discussions on graph topo-
logical properties. For both random network and scale-free
network, we can see neighbourhood growth is at least expo-
nential which sheds light on the flooding strategy design.

3.4 Accuracy on Estimating �

To assess the model accuracy, we generate random and
scale-free topologies for which we calculate the actual aver-
age neighbourhood at each hop distance, i.e, n̄r. To derive
the nr estimated by the model, we first find the parameter of
a corresponding degree distribution, i.e., Poisson for Erdős-
Rényi random graph and power-law for scale-free graph, by
maximum likelihood estimation.2 After finding the distri-
bution parameter, we calculate nr using eq.(7) or eq.(9) and
compute the deviation from n̄r by (nr � n̄r)/n̄r. For both
topologies, we set the number of nodes to N = 10000. If
a generated network is not connected, we use the largest
component hence V can be smaller than N . The link prob-
ability parameter ⇢ determines the number of edges in an
Erdős-Rényi graph, similar to the exponent ↵ in a scale-free
network.

Table 1 summarizes the network properties along with the
deviation, i.e., overestimation ratio. r = 1 is excluded as it
converges to 0 for all settings. For almost every setting,
the model overestimates the reality only slightly for r = 2
and r = 3. For V = 339, we attribute the deviation to
both the finite size e↵ect as well as the absence of random
graph property, i.e., the network does not exhibit Poisson
degree distribution as the model assumes. Increasing hop
count makes the model deviate significantly from the reality,
especially when r � l, which is expected as a result of finite
size of the networks. For r = 4, the model captures the
reality quite well for large V and moderate hki – the region
where the random graph property exists but the network is
not so densely connected. The deviation is higher for the
settings with higher hki due to higher clustering and smaller
network diameter.

2For scale-free networks, we use the method described in
[31].

For scale-free networks, eq.(9) may either underestimate
or overestimate depending on the power-law exponent ↵.
For ↵ ⇡ 3, the expected growth rate is very large result-
ing in overestimation in neighbourhood (e.g., topology-7 in
Table 1). For ↵ > 3, the estimated growth is more sta-
ble which leads to underestimation of the real growth, e.g,
topology-8 and topology-9. We attribute this dispersion to
the diversity of the degree distribution in a scale-free net-
work and limitations of our model to represent this diversity
accurately.
The ISP networks are smaller, ranging from a couple of

hundreds to thousands of nodes [27], which results in a
slower growth after certain hops. To understand this ef-
fect, we derive the growth rate at rth hop as �r =

nr+1

nr
and

plot them in Fig.2 for eight ISP networks. Recall that in
the analysis we have a single � value for the whole networks
withN ! 1. As the figure shows, the growth rate decreases
with increasing hop due to the finite size of the network. Al-
though the growth rate is a decreasing function of r, we can
observe in Fig. 2 that the neighbourhood keeps growing for
several hops, e.g., r ⇡ 5. �r takes values below 1 for r
greater than average path length that varies between 3.36
hops to 5.51 hops. In general, the neighbourhood growth
model performs very well within a moderate scope on both
synthetic and realistic networks.
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Figure 2: Change in neighbourhood in real ISP networks.
We can see that the neighbourhood growth is constrained
by the finite size of real networks. The growth rate slows
down when it is beyond 4 hops.
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Table 1: Overestimation of the model at each hop for various network graphs. V : Number of nodes and E: Number of nodes
in the generated instance of the graph, l: average path length. Shaded cells represent the cases where the error is below 0.20.

Id Topology V E hki l Clustering
Overestimation of the model

r = 2 r = 3 r = 4 r = 5 r = 6
1 Random 339 338 1.994 23.07 0 0.327 1.046 2.359 4.692 9.092
2 Random 8030 9761 2.431 12.03 0 0.152 0.371 0.642 0.972 1.399
3 Random 9426 15068 3.197 8.30 0.00040 0.060 0.130 0.212 0.332 0.565
4 Random 9811 20073 4.091 6.75 0.00049 0.023 0.053 0.106 0.259 0.873
5 Random 9928 25060 5.048 5.88 0.00048 0.004 0.017 0.079 0.419 2.79
6 Random 9989 35020 7.011 4.95 0.00066 0.003 0.030 0.229 2.139 54.124
7 Scale-free, ↵ =3.24 7141 9648 2.70 7.88 0.00057 0.093 0.271 0.529 1.069 2.599
8 Scale-free, ↵ =3.35 5869 7347 2.50 8.66 0.00076 -0.115 -0.174 -0.194 -0.16 0.013
9 Scale-free, ↵ =3.50 5960 7357 2.47 8.99 0.00013 -0.356 -0.555 -0.68 -0.757 -0.794

For 3 < ↵ < 4, the growth rate is bounded but the neigh-
bourhood size never converges. It is also interesting to notice
when ↵ > 4, nr converges to zero at its limit r ! 1. The
reason is the existence of super hubs with extremely high
degrees which strengthens the small-world e↵ect and makes
the network diameter extremely short. We refer to [23] for
more thorough and interesting discussions on graph topo-
logical properties. For both random network and scale-free
network, we can see neighbourhood growth is at least expo-
nential which sheds light on the flooding strategy design.

3.4 Accuracy on Estimating �

To assess the model accuracy, we generate random and
scale-free topologies for which we calculate the actual aver-
age neighbourhood at each hop distance, i.e, n̄r. To derive
the nr estimated by the model, we first find the parameter of
a corresponding degree distribution, i.e., Poisson for Erdős-
Rényi random graph and power-law for scale-free graph, by
maximum likelihood estimation.2 After finding the distri-
bution parameter, we calculate nr using eq.(7) or eq.(9) and
compute the deviation from n̄r by (nr � n̄r)/n̄r. For both
topologies, we set the number of nodes to N = 10000. If
a generated network is not connected, we use the largest
component hence V can be smaller than N . The link prob-
ability parameter ⇢ determines the number of edges in an
Erdős-Rényi graph, similar to the exponent ↵ in a scale-free
network.

Table 1 summarizes the network properties along with the
deviation, i.e., overestimation ratio. r = 1 is excluded as it
converges to 0 for all settings. For almost every setting,
the model overestimates the reality only slightly for r = 2
and r = 3. For V = 339, we attribute the deviation to
both the finite size e↵ect as well as the absence of random
graph property, i.e., the network does not exhibit Poisson
degree distribution as the model assumes. Increasing hop
count makes the model deviate significantly from the reality,
especially when r � l, which is expected as a result of finite
size of the networks. For r = 4, the model captures the
reality quite well for large V and moderate hki – the region
where the random graph property exists but the network is
not so densely connected. The deviation is higher for the
settings with higher hki due to higher clustering and smaller
network diameter.

2For scale-free networks, we use the method described in
[31].

For scale-free networks, eq.(9) may either underestimate
or overestimate depending on the power-law exponent ↵.
For ↵ ⇡ 3, the expected growth rate is very large result-
ing in overestimation in neighbourhood (e.g., topology-7 in
Table 1). For ↵ > 3, the estimated growth is more sta-
ble which leads to underestimation of the real growth, e.g,
topology-8 and topology-9. We attribute this dispersion to
the diversity of the degree distribution in a scale-free net-
work and limitations of our model to represent this diversity
accurately.
The ISP networks are smaller, ranging from a couple of

hundreds to thousands of nodes [27], which results in a
slower growth after certain hops. To understand this ef-
fect, we derive the growth rate at rth hop as �r =

nr+1

nr
and

plot them in Fig.2 for eight ISP networks. Recall that in
the analysis we have a single � value for the whole networks
withN ! 1. As the figure shows, the growth rate decreases
with increasing hop due to the finite size of the network. Al-
though the growth rate is a decreasing function of r, we can
observe in Fig. 2 that the neighbourhood keeps growing for
several hops, e.g., r ⇡ 5. �r takes values below 1 for r
greater than average path length that varies between 3.36
hops to 5.51 hops. In general, the neighbourhood growth
model performs very well within a moderate scope on both
synthetic and realistic networks.
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Figure 2: Change in neighbourhood in real ISP networks.
We can see that the neighbourhood growth is constrained
by the finite size of real networks. The growth rate slows
down when it is beyond 4 hops.
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o  Pretty accurately for big networks for 3 - 4 hops (finite network size in 
contrast to large N in our model).	

o Better accuracy for larger networks (small networks, small network diameter)	



Theory does not always match reality�
�

Test our network growth model with real ISP topologies from Rocketfuel �
	

39	N. Spring, et al., “Measuring ISP topologies with Rocketfuel,” in SIGCOMM, ACM, 2002.	



Accuracy analysis on real ISP topologies	
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Fast growth till 4-5 hops! Then drops due to limited network size and small 
diameter.	

N. Spring, et al., “Measuring ISP topologies with Rocketfuel,” in SIGCOMM, ACM, 2002.	



Summary: our model and analysis on real ISP 
topologies show that �

neighborhood growth is fast at the first hops	
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back to content discovery	

42	



Q: When to flood? �
�

A: Flood when U>0	

43	

Since nodes may be up or down, we let g denote the prob-
ability that a node is up, namely a node’s reliability rate. We
define the effective nodes n̂r as the nodes that are working
and also reachable on the rth ring. Since only the effective
nodes contribute to flooding messages, i.e., improving con-
tent discovery, it is crucial to know the growth of effective
nodes for a specific g in order to derive the optimal radius.

Given a node has n1 1-hop neighbours, its effective 1-hop
neighbours equals n̂1 = gn1 by assuming a node’s state (up or
down) is independent of each other. Given growth rate b , the
effective 2-hop neighbours equals n̂2 = bg2n1. Similarly, we
can calculate n̂3 using n̂2. Applying iteratively, we calculate
the effective nodes on the rth ring as follows:

n̂r = (bg)r�1gn1 = grnr. (10)

It is easy to see the similarity between the eq.(3) and eq.(10).
In fact, n̂1 = gn1 is the effective 1-hop neighbours and bg
can be viewed as effective growth rate given nodes may fail
with certain probability (1� g). For low reliability rates, the
gap between the number of effective nodes and the r-hop
neighbourhood will quickly increase with an increasing r.

4.2 Content Availability as A Priori
The purpose of flooding is to increase the chance of dis-

covery by visiting enough nodes. Given n visited nodes, the
probability of finding the content of availability p equals
(1� qn) which we use to represent the gain from a flood-
ing. On the other hand, a bigger n also introduces larger cost
which limits the utility U as eq.(11) shows:

U = (1�qn)�n · c. (11)

�U in eq.(11) is apparently convex as an exponential func-
tion is convex and the linear combination of convex func-
tions preserves convexity. To maximise U , the optimal num-
ber of nodes n⇤ we need to visit can be calculated as below:

U 0(n) = 0 =)�qn · lnq� c = 0 =) n⇤ =
lnc� ln lnq�1

lnq
.

n⇤ represents the optimal total number of nodes. Using eq.(10),
we can calculate the optimal radius by summing up the effec-
tive nodes from ring 1 to r then solving the equation below.

Â
r

n̂r = Â
r
(bg)r�1gn1 = n⇤

4.3 Inferring the Content Availability
We previously assumed that the content availability p is

known a priori. Technically, we can set up monitoring nodes
to sample request streams. However, monitoring can be ex-
pensive and sometimes may not even be feasible. Neverthe-
less, the probability of finding a specific content in a neigh-
bourhood is a good indicator for its actual availability, since
the more popular a content is, the more probable it is to find
it among nearby neighbours. We use the Bayesian technique
proposed in [32] to estimate content availability. Eq.(12) is
the probability density function of p conditioned on previous

i negative (i.e., unsuccessful) queries.

f (p|i) = Pr(i|p) · f (p)
R 1

0 Pr(i|p) · f (p)d p
(12)

Because Pr(i|p) = qi, if we use the Bernoulli distribution
and let f (p) = 1, then we have

f (p|i) = qi
R 1

0 qid p
= (i+1)qi.

After getting the posterior of p, we can calculate the ex-
pected p after i negative queries as below

hpi=
Z 1

0
p(i+1)qid p =

Z 1

0
(i+1)(1�q)qidq =

1
i+2

. (13)

Note that neither p nor q appears in eq.(13). The deriva-
tion above gives a very clean estimation of content availabil-
ity especially when monitoring is not possible or the content
has never been observed before.

4.4 Content Availability as Posteriori
Without prior knowledge on content availability, we can-

not apply the conventional optimization as that in Section
4.2. Even with the Bayesian inference introduced in Sec-
tion 4.3, deciding the optimal radius can be difficult, es-
pecially when the request comes from directly connected
clients or does not carry any information about the number
of nodes it has traversed. To get around this challenge, we
let a node flood its 1-hop neighbours by default to bootstrap
the inference on p. Then we consider the utility of each ring
separately and adaptively adjust the estimate of p on every
ring. The general mechanism can be summarized as follows:

1. If a request does not contain useful information for
estimating the availability (e.g., number of nodes queried), a
node initiates a flooding to its directly connected neighbours.
A flood message carries 3 pieces of information: the node’s
local growth rate b = n2

n1
; number of 1-hop neighbours n1; a

counter r to record the number of hops it has travelled.3
2. When a node receives a flood message, it first estimates

the availability p using b , n1 and r embedded in the message
by assuming the requested content cannot be found so far
(within r-hop neighbours). More particularly, as follows:

hpi= 1
b r�1gr ·n1

Using this estimated p, the node then estimates the potential
utility of the next ring. Based on the estimated utility, the
node decides whether to continue the flooding or terminate.

More specifically, the overall utility of scoped-flooding is
decomposed according to our ring model. Given that Rr and
3Note that b , n1, and n2 here refer to the local properties of a spe-
cific node instead of the global average. We avoid to introduce
new notations because the following derivation on optimal radius
applies to both local and global cases which is independent on the
parameters plugged in. As we will show in Section 5, Dynamic
flooding uses local parameters while Static uses global ones.
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Since nodes may be up or down, we let g denote the prob-
ability that a node is up, namely a node’s reliability rate. We
define the effective nodes n̂r as the nodes that are working
and also reachable on the rth ring. Since only the effective
nodes contribute to flooding messages, i.e., improving con-
tent discovery, it is crucial to know the growth of effective
nodes for a specific g in order to derive the optimal radius.

Given a node has n1 1-hop neighbours, its effective 1-hop
neighbours equals n̂1 = gn1 by assuming a node’s state (up or
down) is independent of each other. Given growth rate b , the
effective 2-hop neighbours equals n̂2 = bg2n1. Similarly, we
can calculate n̂3 using n̂2. Applying iteratively, we calculate
the effective nodes on the rth ring as follows:

n̂r = (bg)r�1gn1 = grnr. (10)

It is easy to see the similarity between the eq.(3) and eq.(10).
In fact, n̂1 = gn1 is the effective 1-hop neighbours and bg
can be viewed as effective growth rate given nodes may fail
with certain probability (1� g). For low reliability rates, the
gap between the number of effective nodes and the r-hop
neighbourhood will quickly increase with an increasing r.

4.2 Content Availability as A Priori
The purpose of flooding is to increase the chance of dis-

covery by visiting enough nodes. Given n visited nodes, the
probability of finding the content of availability p equals
(1� qn) which we use to represent the gain from a flood-
ing. On the other hand, a bigger n also introduces larger cost
which limits the utility U as eq.(11) shows:

U = (1�qn)�n · c. (11)

�U in eq.(11) is apparently convex as an exponential func-
tion is convex and the linear combination of convex func-
tions preserves convexity. To maximise U , the optimal num-
ber of nodes n⇤ we need to visit can be calculated as below:

U 0(n) = 0 =)�qn · lnq� c = 0 =) n⇤ =
lnc� ln lnq�1

lnq
.

n⇤ represents the optimal total number of nodes. Using eq.(10),
we can calculate the optimal radius by summing up the effec-
tive nodes from ring 1 to r then solving the equation below.

Â
r

n̂r = Â
r
(bg)r�1gn1 = n⇤

4.3 Inferring the Content Availability
We previously assumed that the content availability p is

known a priori. Technically, we can set up monitoring nodes
to sample request streams. However, monitoring can be ex-
pensive and sometimes may not even be feasible. Neverthe-
less, the probability of finding a specific content in a neigh-
bourhood is a good indicator for its actual availability, since
the more popular a content is, the more probable it is to find
it among nearby neighbours. We use the Bayesian technique
proposed in [32] to estimate content availability. Eq.(12) is
the probability density function of p conditioned on previous

i negative (i.e., unsuccessful) queries.

f (p|i) = Pr(i|p) · f (p)
R 1

0 Pr(i|p) · f (p)d p
(12)

Because Pr(i|p) = qi, if we use the Bernoulli distribution
and let f (p) = 1, then we have

f (p|i) = qi
R 1

0 qid p
= (i+1)qi.

After getting the posterior of p, we can calculate the ex-
pected p after i negative queries as below

hpi=
Z 1

0
p(i+1)qid p =

Z 1

0
(i+1)(1�q)qidq =

1
i+2

. (13)

Note that neither p nor q appears in eq.(13). The deriva-
tion above gives a very clean estimation of content availabil-
ity especially when monitoring is not possible or the content
has never been observed before.

4.4 Content Availability as Posteriori
Without prior knowledge on content availability, we can-

not apply the conventional optimization as that in Section
4.2. Even with the Bayesian inference introduced in Sec-
tion 4.3, deciding the optimal radius can be difficult, es-
pecially when the request comes from directly connected
clients or does not carry any information about the number
of nodes it has traversed. To get around this challenge, we
let a node flood its 1-hop neighbours by default to bootstrap
the inference on p. Then we consider the utility of each ring
separately and adaptively adjust the estimate of p on every
ring. The general mechanism can be summarized as follows:

1. If a request does not contain useful information for
estimating the availability (e.g., number of nodes queried), a
node initiates a flooding to its directly connected neighbours.
A flood message carries 3 pieces of information: the node’s
local growth rate b = n2

n1
; number of 1-hop neighbours n1; a

counter r to record the number of hops it has travelled.3
2. When a node receives a flood message, it first estimates

the availability p using b , n1 and r embedded in the message
by assuming the requested content cannot be found so far
(within r-hop neighbours). More particularly, as follows:

hpi= 1
b r�1gr ·n1

Using this estimated p, the node then estimates the potential
utility of the next ring. Based on the estimated utility, the
node decides whether to continue the flooding or terminate.

More specifically, the overall utility of scoped-flooding is
decomposed according to our ring model. Given that Rr and
3Note that b , n1, and n2 here refer to the local properties of a spe-
cific node instead of the global average. We avoid to introduce
new notations because the following derivation on optimal radius
applies to both local and global cases which is independent on the
parameters plugged in. As we will show in Section 5, Dynamic
flooding uses local parameters while Static uses global ones.
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Since nodes may be up or down, we let g denote the prob-
ability that a node is up, namely a node’s reliability rate. We
define the effective nodes n̂r as the nodes that are working
and also reachable on the rth ring. Since only the effective
nodes contribute to flooding messages, i.e., improving con-
tent discovery, it is crucial to know the growth of effective
nodes for a specific g in order to derive the optimal radius.

Given a node has n1 1-hop neighbours, its effective 1-hop
neighbours equals n̂1 = gn1 by assuming a node’s state (up or
down) is independent of each other. Given growth rate b , the
effective 2-hop neighbours equals n̂2 = bg2n1. Similarly, we
can calculate n̂3 using n̂2. Applying iteratively, we calculate
the effective nodes on the rth ring as follows:

n̂r = (bg)r�1gn1 = grnr. (10)

It is easy to see the similarity between the eq.(3) and eq.(10).
In fact, n̂1 = gn1 is the effective 1-hop neighbours and bg
can be viewed as effective growth rate given nodes may fail
with certain probability (1� g). For low reliability rates, the
gap between the number of effective nodes and the r-hop
neighbourhood will quickly increase with an increasing r.

4.2 Content Availability as A Priori
The purpose of flooding is to increase the chance of dis-

covery by visiting enough nodes. Given n visited nodes, the
probability of finding the content of availability p equals
(1� qn) which we use to represent the gain from a flood-
ing. On the other hand, a bigger n also introduces larger cost
which limits the utility U as eq.(11) shows:

U = (1�qn)�n · c. (11)

�U in eq.(11) is apparently convex as an exponential func-
tion is convex and the linear combination of convex func-
tions preserves convexity. To maximise U , the optimal num-
ber of nodes n⇤ we need to visit can be calculated as below:

U 0(n) = 0 =)�qn · lnq� c = 0 =) n⇤ =
lnc� ln lnq�1

lnq
.

n⇤ represents the optimal total number of nodes. Using eq.(10),
we can calculate the optimal radius by summing up the effec-
tive nodes from ring 1 to r then solving the equation below.

Â
r

n̂r = Â
r
(bg)r�1gn1 = n⇤

4.3 Inferring the Content Availability
We previously assumed that the content availability p is

known a priori. Technically, we can set up monitoring nodes
to sample request streams. However, monitoring can be ex-
pensive and sometimes may not even be feasible. Neverthe-
less, the probability of finding a specific content in a neigh-
bourhood is a good indicator for its actual availability, since
the more popular a content is, the more probable it is to find
it among nearby neighbours. We use the Bayesian technique
proposed in [32] to estimate content availability. Eq.(12) is
the probability density function of p conditioned on previous

i negative (i.e., unsuccessful) queries.

f (p|i) = Pr(i|p) · f (p)
R 1

0 Pr(i|p) · f (p)d p
(12)

Because Pr(i|p) = qi, if we use the Bernoulli distribution
and let f (p) = 1, then we have

f (p|i) = qi
R 1

0 qid p
= (i+1)qi.

After getting the posterior of p, we can calculate the ex-
pected p after i negative queries as below

hpi=
Z 1

0
p(i+1)qid p =

Z 1

0
(i+1)(1�q)qidq =

1
i+2

. (13)

Note that neither p nor q appears in eq.(13). The deriva-
tion above gives a very clean estimation of content availabil-
ity especially when monitoring is not possible or the content
has never been observed before.

4.4 Content Availability as Posteriori
Without prior knowledge on content availability, we can-

not apply the conventional optimization as that in Section
4.2. Even with the Bayesian inference introduced in Sec-
tion 4.3, deciding the optimal radius can be difficult, es-
pecially when the request comes from directly connected
clients or does not carry any information about the number
of nodes it has traversed. To get around this challenge, we
let a node flood its 1-hop neighbours by default to bootstrap
the inference on p. Then we consider the utility of each ring
separately and adaptively adjust the estimate of p on every
ring. The general mechanism can be summarized as follows:

1. If a request does not contain useful information for
estimating the availability (e.g., number of nodes queried), a
node initiates a flooding to its directly connected neighbours.
A flood message carries 3 pieces of information: the node’s
local growth rate b = n2

n1
; number of 1-hop neighbours n1; a

counter r to record the number of hops it has travelled.3
2. When a node receives a flood message, it first estimates

the availability p using b , n1 and r embedded in the message
by assuming the requested content cannot be found so far
(within r-hop neighbours). More particularly, as follows:

hpi= 1
b r�1gr ·n1

Using this estimated p, the node then estimates the potential
utility of the next ring. Based on the estimated utility, the
node decides whether to continue the flooding or terminate.

More specifically, the overall utility of scoped-flooding is
decomposed according to our ring model. Given that Rr and
3Note that b , n1, and n2 here refer to the local properties of a spe-
cific node instead of the global average. We avoid to introduce
new notations because the following derivation on optimal radius
applies to both local and global cases which is independent on the
parameters plugged in. As we will show in Section 5, Dynamic
flooding uses local parameters while Static uses global ones.
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Estimating content availability p	
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o  We consider two cases of a given content set.	

§  The availability is given as a priori knowledge.	

§  The availability is unknown, so we apply Bayesian inference* to 

estimate. 	
What is the availability given that I receive 
this discovery message with hop count h, 

i.e., h nodes do not have the content?	

* Esa Hyytiä, S.Bayhan, J.Ott, J.Kangasharju, On Search and Content Availability in Opportunistic Networks, Computer Communications, vol. 
73, Part A, Jan. 2016	
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Content availability	

1-hop neighbors	

2-hop neighbors	

Since nodes may be up or down, we let g denote the prob-
ability that a node is up, namely a node’s reliability rate. We
define the effective nodes n̂r as the nodes that are working
and also reachable on the rth ring. Since only the effective
nodes contribute to flooding messages, i.e., improving con-
tent discovery, it is crucial to know the growth of effective
nodes for a specific g in order to derive the optimal radius.

Given a node has n1 1-hop neighbours, its effective 1-hop
neighbours equals n̂1 = gn1 by assuming a node’s state (up or
down) is independent of each other. Given growth rate b , the
effective 2-hop neighbours equals n̂2 = bg2n1. Similarly, we
can calculate n̂3 using n̂2. Applying iteratively, we calculate
the effective nodes on the rth ring as follows:

n̂r = (bg)r�1gn1 = grnr. (10)

It is easy to see the similarity between the eq.(3) and eq.(10).
In fact, n̂1 = gn1 is the effective 1-hop neighbours and bg
can be viewed as effective growth rate given nodes may fail
with certain probability (1� g). For low reliability rates, the
gap between the number of effective nodes and the r-hop
neighbourhood will quickly increase with an increasing r.

4.2 Content Availability as A Priori
The purpose of flooding is to increase the chance of dis-

covery by visiting enough nodes. Given n visited nodes, the
probability of finding the content of availability p equals
(1� qn) which we use to represent the gain from a flood-
ing. On the other hand, a bigger n also introduces larger cost
which limits the utility U as eq.(11) shows:

U = (1�qn)�n · c. (11)

�U in eq.(11) is apparently convex as an exponential func-
tion is convex and the linear combination of convex func-
tions preserves convexity. To maximise U , the optimal num-
ber of nodes n⇤ we need to visit can be calculated as below:

U 0(n) = 0 =)�qn · lnq� c = 0 =) n⇤ =
lnc� ln lnq�1

lnq
.

n⇤ represents the optimal total number of nodes. Using eq.(10),
we can calculate the optimal radius by summing up the effec-
tive nodes from ring 1 to r then solving the equation below.

Â
r

n̂r = Â
r
(bg)r�1gn1 = n⇤

4.3 Inferring the Content Availability
We previously assumed that the content availability p is

known a priori. Technically, we can set up monitoring nodes
to sample request streams. However, monitoring can be ex-
pensive and sometimes may not even be feasible. Neverthe-
less, the probability of finding a specific content in a neigh-
bourhood is a good indicator for its actual availability, since
the more popular a content is, the more probable it is to find
it among nearby neighbours. We use the Bayesian technique
proposed in [32] to estimate content availability. Eq.(12) is
the probability density function of p conditioned on previous

i negative (i.e., unsuccessful) queries.

f (p|i) = Pr(i|p) · f (p)
R 1

0 Pr(i|p) · f (p)d p
(12)

Because Pr(i|p) = qi, if we use the Bernoulli distribution
and let f (p) = 1, then we have

f (p|i) = qi
R 1

0 qid p
= (i+1)qi.

After getting the posterior of p, we can calculate the ex-
pected p after i negative queries as below

hpi=
Z 1

0
p(i+1)qid p =

Z 1

0
(i+1)(1�q)qidq =

1
i+2

. (13)

Note that neither p nor q appears in eq.(13). The deriva-
tion above gives a very clean estimation of content availabil-
ity especially when monitoring is not possible or the content
has never been observed before.

4.4 Content Availability as Posteriori
Without prior knowledge on content availability, we can-

not apply the conventional optimization as that in Section
4.2. Even with the Bayesian inference introduced in Sec-
tion 4.3, deciding the optimal radius can be difficult, es-
pecially when the request comes from directly connected
clients or does not carry any information about the number
of nodes it has traversed. To get around this challenge, we
let a node flood its 1-hop neighbours by default to bootstrap
the inference on p. Then we consider the utility of each ring
separately and adaptively adjust the estimate of p on every
ring. The general mechanism can be summarized as follows:

1. If a request does not contain useful information for
estimating the availability (e.g., number of nodes queried), a
node initiates a flooding to its directly connected neighbours.
A flood message carries 3 pieces of information: the node’s
local growth rate b = n2

n1
; number of 1-hop neighbours n1; a

counter r to record the number of hops it has travelled.3
2. When a node receives a flood message, it first estimates

the availability p using b , n1 and r embedded in the message
by assuming the requested content cannot be found so far
(within r-hop neighbours). More particularly, as follows:

hpi= 1
b r�1gr ·n1

Using this estimated p, the node then estimates the potential
utility of the next ring. Based on the estimated utility, the
node decides whether to continue the flooding or terminate.

More specifically, the overall utility of scoped-flooding is
decomposed according to our ring model. Given that Rr and
3Note that b , n1, and n2 here refer to the local properties of a spe-
cific node instead of the global average. We avoid to introduce
new notations because the following derivation on optimal radius
applies to both local and global cases which is independent on the
parameters plugged in. As we will show in Section 5, Dynamic
flooding uses local parameters while Static uses global ones.
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A good flooding strategy: 	

o Node is aware of its neighborhood with an accurate topological inference	

o Node is aware of the content’s availability with an accurate inference on user 

requests	

Content availability	

1-hop neighbors	

2-hop neighbors	

Since nodes may be up or down, we let g denote the prob-
ability that a node is up, namely a node’s reliability rate. We
define the effective nodes n̂r as the nodes that are working
and also reachable on the rth ring. Since only the effective
nodes contribute to flooding messages, i.e., improving con-
tent discovery, it is crucial to know the growth of effective
nodes for a specific g in order to derive the optimal radius.

Given a node has n1 1-hop neighbours, its effective 1-hop
neighbours equals n̂1 = gn1 by assuming a node’s state (up or
down) is independent of each other. Given growth rate b , the
effective 2-hop neighbours equals n̂2 = bg2n1. Similarly, we
can calculate n̂3 using n̂2. Applying iteratively, we calculate
the effective nodes on the rth ring as follows:

n̂r = (bg)r�1gn1 = grnr. (10)

It is easy to see the similarity between the eq.(3) and eq.(10).
In fact, n̂1 = gn1 is the effective 1-hop neighbours and bg
can be viewed as effective growth rate given nodes may fail
with certain probability (1� g). For low reliability rates, the
gap between the number of effective nodes and the r-hop
neighbourhood will quickly increase with an increasing r.

4.2 Content Availability as A Priori
The purpose of flooding is to increase the chance of dis-

covery by visiting enough nodes. Given n visited nodes, the
probability of finding the content of availability p equals
(1� qn) which we use to represent the gain from a flood-
ing. On the other hand, a bigger n also introduces larger cost
which limits the utility U as eq.(11) shows:

U = (1�qn)�n · c. (11)

�U in eq.(11) is apparently convex as an exponential func-
tion is convex and the linear combination of convex func-
tions preserves convexity. To maximise U , the optimal num-
ber of nodes n⇤ we need to visit can be calculated as below:

U 0(n) = 0 =)�qn · lnq� c = 0 =) n⇤ =
lnc� ln lnq�1

lnq
.

n⇤ represents the optimal total number of nodes. Using eq.(10),
we can calculate the optimal radius by summing up the effec-
tive nodes from ring 1 to r then solving the equation below.
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n̂r = Â
r
(bg)r�1gn1 = n⇤

4.3 Inferring the Content Availability
We previously assumed that the content availability p is

known a priori. Technically, we can set up monitoring nodes
to sample request streams. However, monitoring can be ex-
pensive and sometimes may not even be feasible. Neverthe-
less, the probability of finding a specific content in a neigh-
bourhood is a good indicator for its actual availability, since
the more popular a content is, the more probable it is to find
it among nearby neighbours. We use the Bayesian technique
proposed in [32] to estimate content availability. Eq.(12) is
the probability density function of p conditioned on previous

i negative (i.e., unsuccessful) queries.

f (p|i) = Pr(i|p) · f (p)
R 1

0 Pr(i|p) · f (p)d p
(12)

Because Pr(i|p) = qi, if we use the Bernoulli distribution
and let f (p) = 1, then we have

f (p|i) = qi
R 1

0 qid p
= (i+1)qi.

After getting the posterior of p, we can calculate the ex-
pected p after i negative queries as below

hpi=
Z 1

0
p(i+1)qid p =

Z 1

0
(i+1)(1�q)qidq =

1
i+2

. (13)

Note that neither p nor q appears in eq.(13). The deriva-
tion above gives a very clean estimation of content availabil-
ity especially when monitoring is not possible or the content
has never been observed before.

4.4 Content Availability as Posteriori
Without prior knowledge on content availability, we can-

not apply the conventional optimization as that in Section
4.2. Even with the Bayesian inference introduced in Sec-
tion 4.3, deciding the optimal radius can be difficult, es-
pecially when the request comes from directly connected
clients or does not carry any information about the number
of nodes it has traversed. To get around this challenge, we
let a node flood its 1-hop neighbours by default to bootstrap
the inference on p. Then we consider the utility of each ring
separately and adaptively adjust the estimate of p on every
ring. The general mechanism can be summarized as follows:

1. If a request does not contain useful information for
estimating the availability (e.g., number of nodes queried), a
node initiates a flooding to its directly connected neighbours.
A flood message carries 3 pieces of information: the node’s
local growth rate b = n2

n1
; number of 1-hop neighbours n1; a

counter r to record the number of hops it has travelled.3
2. When a node receives a flood message, it first estimates

the availability p using b , n1 and r embedded in the message
by assuming the requested content cannot be found so far
(within r-hop neighbours). More particularly, as follows:

hpi= 1
b r�1gr ·n1

Using this estimated p, the node then estimates the potential
utility of the next ring. Based on the estimated utility, the
node decides whether to continue the flooding or terminate.

More specifically, the overall utility of scoped-flooding is
decomposed according to our ring model. Given that Rr and
3Note that b , n1, and n2 here refer to the local properties of a spe-
cific node instead of the global average. We avoid to introduce
new notations because the following derivation on optimal radius
applies to both local and global cases which is independent on the
parameters plugged in. As we will show in Section 5, Dynamic
flooding uses local parameters while Static uses global ones.
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o Static Flooding (r)	
•  Same optimal scope for all nodes	
•  A priori knowledge on availability	
•  Scope is optimised over the whole network using average # of 

1-hop and 2-hop neighbours of the network	
o Dynamic Flooding (ri for node i)	

•  Scope calculated for each node based on that node’s neighbors	
•  With content availability, only flood on popular content	
•  Without content availability, always flood 1-hop neighbours by 

default to infer availability	



Do graph generative models matter?	
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o  Optimal scope 1-3 hops�
	

o  For higher content availability, scope can 
be larger as there is a high chance that 
the content will be in the network	

o  Nodes in a scale-free network have 
more diverse optimal scope setting	

	

CD
F

0

0.5

1
Random

p = 0.1 p = 0.9

Optimal radius
1 1.5 2 2.5 3 3.5

CD
F

0

0.5

1
Scale-free

Content with higher p

Synthetic graphs with 10000 nodes and 60000 edges	



A closer look to the optimal scope	
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o  Scale free: more heterogeneity à divergence from network wide optimal scope.	
o  Negative correlation à nodes at the network core have smaller optimal scope	

Optimal scope calculated by static flooding	



A closer look to the optimal scope	
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o  Scale free: more heterogeneity à divergence from network wide optimal scope.	
o  Negative correlation à nodes at the network core have smaller optimal scope	



Is dynamic flooding always effective?	
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o  Very little utility improvement (10% of the nodes) in ER graph because network-wide 
optimal scope matches node-based optimal scope.	

o  ER: homogenous structure 	

Improvement = (Utility of dynamic flooding - utility of static flooding) / utility of static flooding	
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Is dynamic flooding always effective?	
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o  Correlation between growth and the utility improvement on random network (10% of 
the nodes)  is close to zero, indicating that the significance of improvement is irrelevant 
of a node’s growth rate and its position in the network. 	

o  Correlation on scale-free network (30% of the nodes) is much stronger, with Pearson 
correlation being 0.53.	

Improvement = (Utility of dynamic flooding - utility of static flooding) / utility of static flooding	
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How utilities are distributed in the network?	
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o  Strong negative correlation between the utility and betw. centrality. 	
o  In the dense area, a node has a high betw. centrality, it may include more neighbours 

than necessary (the optimum) even just for 1-hop neighbours. 	
o  In the sparser area, growth rate is lower, so nodes have a better control over the 

neighborhood size by fine-tuning their scope leading to smaller cost and better utility. 	
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Comparison of dynamic, static, and network-wide 
flooding	
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§  Four realistic ISP networks and a community network.	
§  Each node has a 4GB cache with LRU algorithm.	
§  Content set is based on a Youtube video trace.	
§  Nodes of degree 1 are clients.	
§  10 to 20 servers are randomly selected in a network.	
§  The collective request trace is generated using a Hawkes 

process*, which is controlled by both temporal and spatial 
locality factors.	

A. Dabirmoghaddam, et al., “Understanding optimal caching and opportunistic caching at “the edge” of information-centric 
networks,” in ACM ICN’14, 2014	



Byte hit rate, cost, and average hops	
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nw: network-wide 
flooding	
st: static flooding 	
dy: dynamic flooding.	

o  Network-wide flooding always achieves the best byte hit rate, the improvement 
is marginal at the price of 2 to 3 times increase cost.	

o  Dynamic flooding consistently outperforms static one.	

o  Most content are discovered within 2 hops.  Network-wide flooding has the 
highest values due to its inherent aggressiveness.	



What are the limitations of this model?	
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o  Clustering coefficient is not considered in the network 

model, so it overestimates the neighbourhood growth.	

o  Cost of retrieving a content is not considered.	

o  Sublinear growth in gain and exponential growth in cost, 

this needs to be verified and justified in reality.	

o  Only evaluated with LRU, we do not know whether other 

in-network caching algorithms will change our story or 

not.	



Key take-aways	
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o  The neighbourhood (of a medium scope) can be very well approximated with a 
node’s 2-hop information.	

o  Accurate estimation for 3-4 hops on the network growth	
o  Analysis on ISP topologies shows the fast network growth	
o  The choice on static or dynamic flooding depends on the network structure. I.e., 

random or scale-free networks.	
o  When to flood: If expected utility is positive, higher content availability	
o  Where to flood: Better at the network edge	



Thanks�
�

The slides and the paper are available at http://www.hiit.fi/u/bayhan/�
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